
Multics Technical Bulletin HT B-135

To: 0 is tr i but l on

From: Richara Barnes

SubJect: A Gulae to Efficient PL/I Constructs in tne
Multics Environment

Date: October 23, 1974

1. IntrOQUctlon

This documant is an informa• guide to efficient use of
the Hultlcs PL/I complier. It provioes auvice on how to
take aovantage of the yooa features of the compiler while
avoiaing lts weaknesses. Emphasis is placed on discussing
which constructs prouuce more ef f lcient coae than others.
The aocument assumes that th~ reader is familiar with PL/I.

For
oy the
l1a'\uaJ ".

a semi-formal definition of the language supportea
Multics PL/I compiler, see the "PL1I Language

2. Tha Alignment Attributes

The use of the aligned attribute and the unaligned
attrlb~te can have a great effect on the speed of a program
and the size of its aatabase. Whereas unaligned items can
start on a bit boundary (character bounaary for character
st~ings, pictures, ana aecimal variables>, alignea items
.~ust start on at teast a futtword boundary ana occupy an
integral number of fullworas. If a value reQulres 72 bits
or less of storage to represent it, access of the vatue wilt
oe faster if its generation of storage is aligned because it
ca~ b~ airectlv loaaed into the aQ registers.

2.1 Us~ of the Alignment Attributes with Arithmetic and
Pointer Variaolds

Acce5s of aligneu bJnarv ana pointer ~ariabtes is
usually much faster than tnat of unaligned variables.
The ontv e~cept1on to the above is that unaligned
pointers that happen to be fullwora alignea are
acc~ssed at speeas comparable t~ that of aligned
pointers, but the former cannot oe indirected through.
In general one should use alJgne~ binary ana pointer

Multics Pro)ect internal working documentation. Not to
reproQuceo or Qistrlbuted outsJae the Multics ProJect.

be

Page 2 MTB-135

variaol~s for local scalar variables, and only use
ynallgnec binary ana pointer variables in large aata
structures where size is i~portant, but speed of access
is not.

The alignment attribute has no effect on the access
time of aeclma• variables.

2.2 Use of the Allgn~ent Attributes with Short Strings

A short string is aef lned to be a nonvarvlng
string with consta~t extents whose length is less than
or eQual to 72 bits <eight chara:ters). Access of
aligned short strings is usually much faster than that
of Jnalignea short strings. Thus, lt is r~commenaed
that one use aligned short strings for local scalar
variables, and restrict the use of unallgnea short
strings to large aata structures where space ls
important.

2·5 Ust of th~ Alignment Attrloute ~lth Long Strings

All nonvarving strings that are not short are
considered to be long. Because, in general, these
strings are too long to flt into the aQ registers, the
use of the aligned attribute doas not speea up their
dccess. Therefore, it is racommended that one use the
aetd~lt alignment attrlbute-·unalignea.

All varvi~g strings are considered to be aligned
whether ~eCldred aligned or unallgnaQ.

2.4 Use of Unalignea Short Variables in
Structures

Arrays and

For th= purposes of
variaDles ars those varldbles
72 oits (eight charactersl of
with constant extents.

this discussion, short
which occupy no more than
storage ana are ~eclarea

When accessing an element of an array of short
unallgne~ varid~les, the access code is Quicker if a
cv~stant subscript ls useJ, because the complier uses
an EIS lExtende~ Instruction Set) l~structlon, when the
suoscript is not constant, in accessing the variable~

If an unaligned short variaole is contained ln an array
of structyres, ano the variable is acc~ssea with a
nonconstant subscript, access code is faster if the
drrav ls a~clared aligned, because the use of an EIS
instruction is avoi~ea.

MTB-135 Page 3

3. Use of the Precision Attribute in Offset an~
Ex~resslons

Len~th

Because 6160 index registers can only hola 18 oits of
information, white up to 24 bits may be neeaed to express
th~ offset or length of a string for use in an EIS
instruction, the compiler must make use of the precision
attribute in deciaing which register to use. If a subscript
expression, the second or third argument of the ~ubstr
builtin, or th~ aeclarea length of a strlng has a precision
of 18 or less, lt can be kept in an lnde~ register, whereas
if the precision ls more than 18,lt must be kept in the a or
Q re~lster. This means, for exampae, that if a user knows
that he wants a substring that may oe more than 262,143
items long, then the preclsion of the third argument of
suostr shouta reflect that fact (otherwise the hlgh-or~er
bits of the length may be lost>. Conversety, if the user
knows that a string ls less than 262t144 items long, he
shoula ref fect that knowleage in the precision useo for
iUOscripts ano arguments to substr. (Besides looking at the
precislon of the length and offset expresslons, the complier
also maKes use of the aeclared string slze in cases of

.constant extents to determine where the offset or length mav
be kspt.>

The use of Internal Static to Simulate Nam~d Constants

If d varlab•e ls declared to be internal static with an
initial attribute ana it ls never set within a program, the
COTIPiler will treat it as if it wer~ a constant. (A
variabl~ ls consioered set lf it appears on the left side of
an assignment statement, ls the first argument of a
ps~uaov&riable, appears in the llst of a get statement,
appears as the target of a reaa statement, appears in a set
option, is p~ssea as an argument, ls an argument to the a~ar
oulttin, or is the base reference of a defined attribute.>
Co,vertlng an int~rnal static variable to a constant means
that more eff iclent coae wltl often be generateo to use the
variable, sometimes avoiding storage references, ana that
the varlaole will not have to be copied into the comolned
linkage section upon initiation of the segment. Slnce
passing a variable as an argument ls eQuivalent to setting
it, one must enclose the variable ln parentheses if it is to
appear ln an argument list. This will make the variable be
passea by value and force a copy to be maae at call time.
HaKing sure that such an internal static variable, which the
~ser intenQS to wse as a constant, is consloere~ by the
co~piler to ce a constant is worthwhile if the variable is
not a long string which is only used in a few calls. This
feature of the comp1ter is a gooo substitute for name~
constants which the PL/I language generally does not
provide.

Page £+ 11TB•135

5. use of th~ Initial Attribute

The complter•s lmp•ementat1on of the initial attribute
for automatic, based, ano controlled arravs ls inefficient
compared with the code th~ user can get from expllclt
as~lgnment statements. Therefore, use of the initlal
attribute in the above cases ls discourage~. Since the use
of the Initial attribute does not generate code for static
variables, the above statement joes not apply ln that case.
Users are warned, however, that use of the lnltial attribute
can make a program more difficult to read in some cases, and
that initialization of large external static arrays this way
cai cause creation of a larger oo)ect segment tnan intended.

6~ The Assignment Operatlon

6.1 The Multiple Assignment Statement

In aeclding whether or not to use a multiple
assignm~nt statement rather than separate assignment
statements, it is useful to know una~r ~hich
circumstances multiple assignment statements produce
lnefficlent coJe. A multiple assignment statement of
the form

T1, r2, ---, Tn = E;

wh~re E is not a constant, ls semantically eQuivatent
to the separate statements

V ;:;; E;

T1 = IJ;

T2 = V;

•

•

•

Tn = v;

If the temporary represented by V can be kept in a
mdchl~e register throughout the assignment, then the
multipJ~ assignment statemHnt ls efficient. Clearly,
this implies that if E is longer than two woras, the
mu.Jtlple assignment statHment wU I tUl.1 be et ficient,
since E cannot tit in a register. Thus, multiple
dSsignment statements are not efficient when the right
hdna sia~ is a long string, a varving string, an entry
var&abl~, a label value, a file value, a torm~t value,

MTB-135

an area, a aecimal value,
aggregate.

Page 5

a complex value, or an

b.2 Conversions

All of the PL/I conversions are efficient, many of
them proaucing inline code, while the others produce
cal ts to anv_to_any_. In line coae is produced for al I
cases where neither the s6urce nor target are complex,
aecimal, character string, or picture (SEe 6.3). Of
the other cases• thE following produces inline codel

complex_f loat blnarv (~27) = real binary;

real binary = complex_float blnary(~27>;

real decimal = real decimal;

complex aec1mal =
real binary integer = real decimal;

real aecimal = real binary integer;

character = real fixed decimal;

character = real binary integer;

All other cases proauce calls to any_to_any_.

The convert builtin function can be used to effect
conversion between character ana binary and avoid
intermediate conversions that other bulltins might
cause.

6.3 Pictures

The use of pictures proviaes a convenient way to
get dfficient controlled conversion between arithmetic
and character. When using pictures, the user can dVOid
PLtr•s inconvenient conversion r~les by specifying the
format neishe wishes.

White picture unpacking (going from character to
arithmetic form) ls done by Pl1_operators_ call, the
most common cases of picture editing (golng from
arJthe~tlc to character form) are aon~ 1nt1ne. At
present, inline code ls generated for the maJority of
cases of editing into real f ixea pictures. The cases
of eaiting into real flxea pictures that produce
P•1_operators_ caf ls are any of the following:

Page o

0 the aosolute value of the number•s scale ls
greater them 31

o a "y" picture character appears ln a drlftlng
Heta plcture h:.g., ~$$V99)

o a zero suppression character or arlftlng character
appears to the right of the "v" picture character

0 the inllne seQuence ~eQuires more than b3
micro-ops tor the HVNE instruction

7. Arlthmetlc Operations

Most arlthmetic operations are Implemented with fast
inlin= code. The one gen~ral exception ls the power
operator •• whlch is sometimes implemented with
ptl_operators_ calls or subroutine calls. USERS ARE
CAUTIONED AGAIN5T USING THE "I" OPERATOR WITH FIXED POINT
OPtRANOS AS THE PL/I PRECISION R~LES HAY CAUSE UNEXPECTED
RESULTS.

7.1 Binary Operations

~ost binary arithmetic operations produce inllne code.
Multiptlcdtion of fixeu oinary (~36) numbers produces
pl1_operators_ calls, all division _invoked Dy the "I"
operator cause calls to slow pl1_operators_ routines.

The "+•" operation normal Iv generates
pl1_op~rators_ calls for real operands and full
s~broutine calls for complex operanas. If the operanas
are both real, and the secona operand ls a positive
integer constant that could be represented as a fixed
bln(35) value, inline coQe will be generatea to do the
power operation as repeated multiplications.

7.2 Oeclma1 Operations

Host aecimal arithmetic operations cause efficient
lntlne coae to be generated. The maJor exception is
the cas~ of one or both of the operanas having a scale
greater than j2 or less than -31. This case will often
cause additional dsslgnments or multlpllcations to oe
gen~ratea slnce the &18u har~ware onlv han~les scales
wlthln the range -31 to 32.

If the power op~rato~ has decimal operands, a
conversion to ana from uinarv and/or a subroutine call
will be generated.

11TB- l35 Page 7

8. Strlng Operations

All string operations <as oppose~ to b~iltlns) cause
inllne code to be generated. In addltion. some special
cases cause better than usual code to be generated.

8.1 Special Gase of Concatenation

Concatentation is often usaa ln constructing
varying strings. A normal concatenation of the form

a= b II c;

results in three (3) moves b aro c are move~ into a
temporary, and the result is moved into a. However, a
concatenation of the form

llS = llS II c;

where vs is a varying string, results in Just one move
c is moveo to the ena of vs. The latter special

case can be used to great advantage in building varying
strings. Conslaer the following example:

vs= a II b II c;

results in four moves and perhaps some instructions to
al1ocate temporaries. white

vs = a;

vs = vs I I b;

vs= vs II c;

results in three moves with no temporaries altocatea.

8.2 Operations on Long Strings

~ost statements of the form

a = b <bool_op> c;

a= transtata (b, •••);

a= bool (b.c,<t>olr»;

where a, b, and c are tong nonvarying strings, cause
co~e to oe generated that performs the operation in a
temporary ana then moves the result into a. However,
if d is the same length as the temporary wouto b~, an~

if the compiler b~tieves tnat a could not possioty
over I ap with t> or c then the operation wi It t>e

Page 6 HTB-i35

performe~ airectly in a and no temporary will oe
al locatea. (Note, that due to a problem with the
current lmplementatlon, this optimization only occurs
lf a ls unallgnea for boolean operations, and only if a
is aligned for Duiltlns.>

In a statement of the form

if d <op> b

if bool ca, o, <bolr>)

where a ~no D are long strings, the compiler wlll
att~mpt to ao the operation, without at locating a
temporary, oy u~ing an SZTL instruction it the value ls
not neeaea elsewhere.

8.3 Aggregate Op~ratlons

Most
assignment
bull tins
lntftlcient
ana should
assignment

aggregate operations, other than simple
ana the use of the string and unspec
and pseudovariables, are relatively
1n tne present MJltics PL/I implementation
be avoidea. By simple, assignment, we mean

statements of the form.

p -> aggregate = ~ -> aggregate;

9. Use of the Bulltln Functions

Host of the stanaaro PL/I builtln
Ps~uaovdriaD&es are implemented efficiently
coTipiler. Tn~re dre certain exceptions an~

that snoula be mentioned £XPlicltly.

~-1 Arithmetic Builtins

functions and
in the Kuttics
special cases

With the exception of the divlde builtin, alt tne
arithmetic bulltins cause efficient coae to be
generatea. The alviae bulltin is inefflclent only for
so~c cases in which a fixed oinary result is proaucea.
If a flxea binary result ls produced, a call to a very
stow oll_operdtors_ oivl~e routine is generatea unless
the result and botn operands a~e unscaled with a
precision less than or equal to 35.

g.2 String Ou1ltins

~fficlent inllne or out-of-line code ls generated
tor all but three striny oulltlns anu pseuoovarlables.
The builtins that are handled lnefflcientlv are before,

MTB· :i..35 Page 9

aftl!r, ano aecat. Exec1.Ation of these three bulrt.i.ns .i.s
about 5~ t.i.mes slower than might be expectea.

There are special cases of some of the other
str.i.ng bullt.i.ns that CoJSe more eft.i.c.i.ent cooe to be
generateo than ls normally 1eneratea for the general
case. Th~se area

index (<char_str>, <cnarl>)

.i.ndex (<char_str), <charz>)

lnaex <reverseC<char_str>), <char1>)

lnoex <reverse(<char_str>), <char2>)

search (<char1>, <char_str>)

verify (<charz>, <char_str>)

search (<char_str>, <constant>)

verify (<char_str>, <constant>)

search <reverse<<char_str>), <constant>)

verify (reverse(<char_str>), <constant>)

translate (<char_str>, <constant> C,<constant>J)

Note tnat the search, verify, and translate bulltln
f~nctlons expect that the characters in their lnput are
al I legal ASCII characters. These ouiltlns may W21 oy
usea to process strings wltn non~ASCII characters.

3.3 Mathematical Bulltlns

References to the mathematical bulltln functions
are complied either into fast cat Is to pl1_operators_
or into stower normal sucroutlne calls. The following
math bulltlns are complleo into pll_operators_ calls if
they have real arguments:

Page lL HTB-135

1u.

a tan exp sin tand

at and log slnd

cos t 0310 SQrt

co so logZ tan

A I I other cases produce subr-out lne ca I Is.

The Ca I I Statement and Function R.eferences

When a call statement or function reference ls
executeo,in the general case, an argument list must De
coistr-uctea which tak&s 3 + 2•number_of _ar9uments
instructions to ao. When tne new proceaure block is
entered, a new stack frame ls established by a
011_operators_ routine that takes arouna 30 instructions.
Thls is a high overhaau to have when uslng an important
feature of PL/I that ls necessary for good programming
practic~. The Multics PL/I compiler has two optimizations
which can greatly reauce this overheaa. Flrst, it can
deciae that an internal procedur-e or begin block may share
the stack frame of another bloc~ rather- than obtaining its
own. A olock that does not obtain Its own stack frame is
called a "Quick" biock or procedure. Second, the compiler
can Duilu argument lists to QYlck proceaures at compile
ti~e, if tne arguments have constant addresses known at
compile time. These two optimizations greatly reduce the
cost of caaa statements ana function references.

10.1 Determining the "Quickness" of a Block
'

The Hui tics PL/I compiler goes through a two stage
process to cetermine which (procedure or begin) blocks
can be ~ulcK, that is which ones need not obtain stack
frames. The first stage excludes otocks from being
Quick because of their properties. The following
properties can make a block non-Quick.

0 it is the external proceaure block

0 it is an ON-unit

0 it has I/ l> statements

0 it has format statements

0 it has ON, revert, or sl gnat statements

0 it has automatic variaoles wlth express ion extents

\ -

MTB-135

0 it has an entry that is assignea to
varlaote or passed as an argu~ent

Page 11

an entry

o lt has an entry with a star-extent ret~rn value

o it has an entry with a star-extent parameter that
is calle~ with the corresponalng argument being an
expression whose length ls non-constant

o it hds an entry that ls referencea in the argument
ilst of such a call after the aforementioned
argument

In the s~cona stage, the complier uses a graph of
the calls between blocks, to determinE which of the
remaining eligible blocks canoe Quick. The algorithm
usea in this stage is an iterative one based on the
constraint that a Qulck biock may use the stack frame
of one ana oniy one non-~uick block anu thus may
effectiveJy oe invokea from only one non-aulck block.
In fact, the aJgorlthm states that a Quick block may oe
lnvokea from only one stack frame, ana an !nvocation
from a Quick block is considered an invocation from its
owner•s stack frame.

A user can aetermlne which block has been made
quick by examlnlng the symbols listings proouced by the
complier. In the section markea, .. STORAGE REQUIREMENTS
FOR THIS PROGRAM" ls a list of all the blocks in the
program. If the line for a particular block contains
the woras, .. shares stack frame of", that block is
quick.

10·2 Dererminirig which C~I Is
Constant ·Argument Lists

and Function Refer~nces Use

In generatlng a quick procedure call, the Multics
PL/I compiler can often gen~rate a constant argument
list if the adaresses of the arguments are known at
compile time. This saves the cost of executing
instructions to set up the argument list at runtime.
At this time the following constraints must be
satlsfle~ tor the complier to generate a constant
argument list:

o the quick procedure must contain no non-quick
o I ocks

o the stack frame of the caller must be smaller than
1&,384 words

o the argume~ts must be constants, expressions with
operators, built in references, function

Page: 12

ref~rences, or automatic variables

o all automatic argum~nts must be al locatea in the
stack frame of the caller

o alJ automatic aryuments must have constant extents

0 al I subscripted arguments must have
subscripts

constant

11. Using If Statements

In han~•ing if statements containing logical operators,
su: h as

if x = u I p -=null I x t 3 < 2
then cal I a;

if z > 3 ~ Q =null & loaded
then cal I b;

the present Multics PL/I compiler ganerates code that
evaluate5 th~ entire logical expression before making the
Jumps, even though evaluation of one item of a logical
op=rator might suffice to decide the result. In addition,
co~vertlng the result of a retational operator to bit (1)
rc~uires a call to a verv short seQuence in pl1_operators_.
<This s&Quence averages about three instructions.> Tnis
ca~ses a conflict between considerations of speea ana stvte.
Whila the above examples mav be easier to reaa and debug,
The following examples would be faster:

lab:

if x = u then go to lao;
if p -=null then go to lab;
if x • 3 < 2

t h.::l'l
ca I I a;

or

if z > j

then if Q = nul I
t h"rn if I oaaea

then call b;

R~s~lvin~ such~ cont I let is ~n individual decision. In any
particular cas~, one has to Ju~ge whether the extra speed of
the latter approach is worth the lack of ctarltv and
st~ucture it entails. Obviously the answer wlll differ from
case to case ana programmer to progra~mer.

Thcr~ are plans to improve the PL/I compller•s hanallng
of such if statements in a future impJementation so that the

HTB-135 Page 13

st~ucturea approach wlll g~t more ~fficient coae.

12. Other Con~tructs That Are Costly or Dangerous

o aefault statements

o multlaimenslonal arrays with star bounas

o arrays of eiements of star extents

0 pro~rams reQY1ring a stack frame of more
10,384 words

than

