Muitics

"l Tos

Fromt

Subjects

Dates:

Technical Butletin MTB-135

Distribution
Richarg Barnes

A Guiae to Etficient PL/I Constructs in the
Muitics Environment

Qctober 23y 1974

1. Introcuuction

This document is an informal guide to effliclient use of

the Multics PL/I compiler. It proviges auvice on how to
takxe aavantage of the yood features of the compiler while
avplaing its weaknesses. Emphasis iIs placed on discussing
which constructs prouuce more efficient coge than others.

The

Dy

gocument assumes that the readger is familiar with PL/I.

For a semi~tormal definition of the {ianguage supportea
tha Multics PL/I compiler, see the *“PL/s/I Languaye

Marual®,.

S Tha Allgnment Attributes

The use of the aligned attribute and the unallgned

attribJte can have a great effect on the speed of a program

ana

the size of its database. Wherzas unaligned items can

start on a bit boundary (character boundary for character

st~

ingsy pictures, ana aecimal variables), alignea items

must start on at least a fullword boundary and oOCCupy an
integrat number of fuliwordse. If a3 value requires 72 bits

or
be

less of storage to represent it, access of the value will
faster if its generation of storage is aligned because it

Can be alrectly loaded iInto the agq registerse.

del

P Mul tics

Use of the Alignment Attriputes with Arithmetic and
Pointer Variaoles

Access ot aligneu binary ang pointer variables is
usualtly much faster fthan that of wunaligned variablese.
The only exception to the above is that unaligned
pointers that happen t0 be fullwora alignea are
accessed at speeds comparable to that ot aligned
pointersy but the former cannot e indirected through,
In general one should use aligneud binary anda pointer

Project internal working documentation. Not to pe

reprouucea or uistributed outside the Multics Project.



Page ¢

MTB-135

variables for tocalt scalar variables, and only use
unalignec Dbinary ana pointer variables in large gata
stryctures where size is iaportant, but speed of access
is note

The alignment attribute has no effect on the access
time of decimal variables.

use of the Alignment Atftributes with Short Strings

A short string is aqefined to0 be a nonvarying
string with constant extents whose length is tess than
or equal to 72 pits (eight characters). Access of
aligned short strings is usually much faster than that
ot unaligned short strings. Thus, it is recommendged
that one use alignhed short strings for local scalar
variables, and restrict the use of unalignead short
strings to large aqata structures where space |is
important.

Use of the Alignment Attripute with Long Strings

All nonvarying strings that are not short are
considered to be longe. Becausey, in general, these
strings are too tong to fit into the ag registers, the
use of the aligned attribute doaes not speed up their
aCCesS3e Therefore, it is recommended that one use the
getault alignment attribute--unaligneda.

Al varying strings are considered to be aligned
whether ageclared aligned or unatlgnza.

Use ot Unalignea Short Vvariables in Arrays and
Structures

For the purposes of this discussion, short
variables are those variablas which occupy no more than
7¢ pbits leight characters) of storage and are geci areag
nith constant extents.

When accessing an ealement of an array of short
unaligneg variables, the access code is quicker {f a
cunstant subscript is usedy, because the compiler uses
an £IS (Extendgeu Instruction Set) jiastruction, when the
subscript is not constant, In accessing the wvariable.
If an unaligned short variaole is contained In an array
of structures, ana the variable 1s accesseu with a
nonconstant subscript, access code |is faster if the
array lIs aecliared aligned, because the use of an EIS
instruction is avoiued.



r

MTB~-135 Page 3

3.

Ge

Use o0t tThe Precision Attribute in Otftfset anu Lengtnh
Exorassions

Because ©618¢Q index registers can only hola 18 pbits of
intformationy, while up to 24 bits may be neeaed to express
the offset or fength of a string for wuse in an EIS
instructiony the complier must make uJse of the precision
attribute in deciding which register to use. If a subscript
expression, the second or third argument ot the substr
builttin, or the aeciared ltength of a string has a precision
of 18 or less,y it can be kept in an indeX register, whereas
it the precision 1is more than 18,1it must be kept in the a or
q reyister. This meansy for exampley that if & user KNOWS
that he wants a substring that may 2e more than 262,143
items long, then the preclsion of the fthird argument of
suostr shoula reflect that fact (otherwise the high-oraer
bits of the tength may be tost). Converselyy if the user
knows that a string 1is tess than 262,144 [tems long, he
shoula reflect that knowleage in the precision useu for
subscripts ana arguments to substr. {Besiaes looking at thne
precision of the length and offset exprassionsy the compiler
also maxkes use of the deciliared string slze in cases of

constant extents to determine where the offset or length may

pbe Kepta)
The Use of Internat Static to Simulate Named Constants

It a variable is declared to be internal static with an
initial attripbpute ana it Is never set within a program, the

conpiter wili treat it as if it were a constant. (A
varliable is consiadered set [f it appears on the letft side of
an assignment statement, is the tirst argument of a

pszugovariabley, appears in the fist of a get statement,
appears as the target of a reau statement, appears in a set
optiony iS passea as an argument, ls an argument to the aJddr
cuiltine, or is the base reference of a defined attriobute.)
Conwverting an internal static variable to a constant means
that more efficient code wili offen be generateua to use the
variable, sometimes avoiding storage referencesy ana fhat
the variaple will not have to be copied into the compined
linkage section upon initiation of the segment. Since
passing a wvariable as an argument is equivalent to setting
ity one must enclose the variable Iln parentheses if it [Is to
appear in an argument list. This will make the variable bpe
passed by value and tforce a copy to be made at call time.
Making sure that such an internal static variable, which the
user intenas to use as a3 constant, is consiuereud Dby the
counpiler to DpDe a constant is worthwhile if the variable is

not a long string which is only used in a3 few <callise. This
feature of the compuier is a3 gooa substitute for nameq
constants which fthe PL/T language generally does not

providea



Page & MTB=-135

Use ot the Initial Attribufte

The compiier®*s implementation of the initial attribute
for automaticy basedy and controlled arrays is inefficient
compared with the code the user can get from explicit
assignment statements. Therefore, use ot the initial
attribute in the above cases is discouraged. Since the use
of the initial afttribute does not generate code for static
variablesy, the above statement Jdoes not apply in that case.
Users are warned, however, that use of the initial attrioute
can make & program more difticult to read in some casesy and
that initlatlization of ltarge external static arrays this way
can cause creation of a larger ob)ject segment tnan intended.

The Assignment Operatlion
bei The Muitiple Assignment Statement

In deciding whether or not to use a muiltiptle
assignment statement rather than separate assignment
statements, it is useful to KNow Jnaer which
circumstances muitiple assignment statements produce
inegfficient coue. A multipie assignment statement of
the form

Tie T2y =~=-9 Tn = Ej

where E iS not a constant, is semantically equivalent
to the separate statements

V = E3
T1 = V3
Te = Vy
Tn = V3 !

If the temporary represented by V can be kept in a
machine register throughout the assignment, then the

multiple assignment statement (s efflcient. Ciearly,
this implies that if £ Is ftonger than two wWoras, the
muiltiple assignment statement will nogt bpe efficlent,

since E cannot fit in a register. Thuss multiple
assignment statements are not efficient when the right
hana side is a long stringy, a varying strings an eniry
variable, a label value, a fife value, a tormat valuey



MTB-135 Page 5

an dareas a daecimal value, a complex valuey Or an
aggregates

be2 CoOnversions

Afl of the PL/I conversions are efficient, many of
them proaucing inline codey, while the others produce
calls to any_to_any_« Iniline codge is produced for all
cases where neither the source nor target are complexy,
aecimal, character stringy or picture (See b+3)e ot
the other casesy the following produces inline code?

complex_float binary (<27) real binarys

real binary complex_tloat binary (<27);

real decimal = real decimal;
complex oecimal = complex agecimals
real binary integer = real aecimalj

real aecimal = real) binary integer;
character = real fixéd decimal;
character = real binary integer;

All other cases prodauce calls to any_to_any_.

The convert puiltin tunction can be used to effect
conversion between character and binary ana avoid
intermediate conversions that other bulltins mignht
causes

bel Pictures

The use of plctures provldes a convenjient way to
get aofficient controilled conversion between arithmetic
and charactera. When using picturesy, the user can avoid
PL/I*s inconvenient conversion rJdifes by specitying the
format ne/she wWwishes.

White picture wunpacking (going from character to

arithmetic form) is done by pili_operators_ cally, the
most common cases of picture editing (going from
arithemtic fto character form) are gone inline. At
present, inline code is genarated for the majority of
cases of editing into reail fixea plctures. The cases
of editing into reai fixed pictures that produce

pli_operators_ calils are any of the following:



Page o MTB-135

o the apsolute value of the number®s scale is
greater than 31

0 3 "y" picture character appears in a drifting
fiala picture (e.g9.y 333y939)

o] a Zero suppression character or drjifting character
appears to the right of the "“v" picture character

o] the intine seguence r~equires more than 63
micro-~ops tor the MVNE instruction

Arithmetic QOperations

Most arithmetic operations are implemented with fast

inling code. The one general exception 1s the power
operator - ¥x which is sometimes implemented wWith
pli_operators_ calls or subroudtine calis. USERS ARE

CAUTIONED AGAINST USING THE '"/'™ OPERATOR WITH FIXED POINT
OPERANDS AS THE PL/I PRECISION RULES MAY CAUSE UNEXPECTED
RESULTS.

/7«1 Binary Operations

Nost binary arithmetic operations produce inline code.
Multiptication of fixeu pinary (236) numbers proagauces
pli_operators_ callsy all division invoked by the /"
operator cause cailis to slow pli_operators_ routinese.

The Mrw operation normatlly generates
pli_operators_ calls tor real operands and fulil
subroutine calls for complex operands. It the operands
are potnh real, and the second operana is a positive
integer constant that could be represented as a fixed
bin(35%) value,y, inline coue wWwill be generateu to do the
power operation as repeated multiplicationse.

7«2 Decimatl Operations

Most decimal arithmetic operations cause efficient
intine <code to be generated.s The major exception Is
the case of one or both of the operanas having a scale
greater than 32 or less than =-3i. This casc will often
cause adaitional assignments or multtiplications to be
generatea since the b6i8u haraware only hanuies scales
within the range =31 to 32.

It the powar operator has decimal operandss a
conversion to ana from vinary and/or a subroutine call
will be generated,



MTB-135 Page 7

8. String QOperations
Al string operations {as opposea to builtins) cause
intine code to be generated. In addition, some special

Cases cause better than usual code to be generateds.
841 Special Case of Concatenation

Concatrentation is often used in consftructing
varysng strings. A normal concatenation of the form

a = b ¢! cs
results 1n three (3) moves =-- b ana ¢ are moveud into a
temporary, and the result is moved into 3. However, a
concatenation of the form

vs = vs tl ¢
where vs is a varying strings, results in Just one move
-- is moveu to the ena of vse. The latter special
case ¢an be used to great advantage in building varying
stringse. Consiager the following example?

vs = a ! b It c3

results in four moves and pernaps some [nstructions to
gl focate temporaries, while

Vs = a3
vs = vs ¢! by
vs = ws ! ¢

results in three moves with no temporaries allocated.
842 Operations on Long Strings

Most statements of the forn

84 = b <bool_op>» Cj
a = transiate {Deesel
a = bool (becy<poir>);,

where as by and ¢ are long nonvarying strings, cause
coue to be generated that performs the operation in a
temporary and then moves the result into a. However,
Lf a is the same length as the temporary woulud bey, and
if the compiler believes tnhat a could not possibly
overiap with © or ¢ then the operation willi be



Page 8 MTB-135

performed airectly in a and no femporary will be
aliocateaq, (Notey fthat due to a prooiem with the
current implementations, this optimization onily occurs
it a is unaligned for boolean operations, and only if a
is aligned for duiltins.)

In a statement of the form
if a <op> b
or
if bool (as 0y <boir>)
where a ancG o are ftong stringse the compiier will
attempt to ao the operation, Wwithout allocating a
temporarys oy Jusing an SZTL instruction if the value is

not needec eisewhere.

843 Aggregate Operations

Most aggregate operations, other than sjimple
assignment and the use of the string and unspec
builtins and pseudovariables, are refatively

inefticient in the present MJuyltics PL/I implementation
and should be avoideds By simpley assignment, we mean
assignment statements of the form.

p -> aggregate = 3 =-> aggregate;
Use of the Bulltin Functions

Most of the stanaarc PL/I builtin functions and
pseuagovariables are implemented efticiently in the Muttics
conpilera There are certain exceptlons and special cases
that snould be mentioned explicitlye.

Je1 Arithmetic Builtins

With the exception of the divide buiiltin, alt the
arithmetic bulltins cause efticlient coue to be
generatag. The alviue builtin s inetticlient onty for
Some cases in which a tixed binary result s proauceda,
It a ftixea vinary result Is produced, a call to a very
stow pll_operdtors_ wiviue routine is generateg wuniess
the result and both operands are unscaled with a
precision less than or agqual to 35.

9.2 String Buitltins
cfficient inline or out-of-line code Is generated

tor all but three striny pdbuiltins and pseudcovariables,.
The builtins that are handied iInefficiently are before,

ﬂ



MTB=-135

Page 9
after, ano cecate. Execution of these three bulltins is
about S0 times slower than might be expected.

There are special cases of some of the other
string bulltins that cauJuse more efticient coce to be
generated than is normatly generated for the general
casee. These aretd

index (<char_str>, <chari>)

index f{<char_str), <char?2>)

inadex (reversel(<char_str»), <chari>»)

Index (reversel<char_str>), <char>)

search {<charil>, <char_str»>)

verity {(<chargz>, <char_str>)

search (<char_str>, <constant>)

verify (<char_str>», <constant>)

search (reverse(<char_str»), <constant»>)

verity (reverse(<char_str>}), <constant»>)

transiate {(<char_str>, <constant> {(,<constant>])
Note that the searchy verify, and translate bulltin
functions expect that the characters in their input are
all legal ASCII characters. These pbuiltins may pot by
Jused to process strings with non-ASCII characterse.
Mathematical Builtins

References to the mathematical builtin functiaons
are compiled either [nto fast catls to pli_operators_
or into silower normal subroutine calls.e The following

math builtins are compileda into pli_operators_ calls it
they have real arguments:



atan g xp sin tana
atand log sind
cos {o31¢ sart
cosa loge tan
All other cases produce subroutine callis.
The Calt Statement and Function References
When a call statement or function reference is
executecyin the general casey an argument list must Dpe
constructea which takes 3 + 2¥number_of_arguments
instructions TtTo a0, When the new procecure bilock |is
entered, a new stack frame is established by a
pli_operators_ routine that takes around 3§ instructions.

This is a high overheaud to bhave when uJusing an important
feature of PL/I that is necessary for good programming
practice. The Multics PL/I compiler has two optimjzations
which can greatly reduce this overheaa. First, it can
decige that an internal procedure or begin block may share
the stack frame of another block rather than obtaining its
owne A olock that does not obtain its own stack frame is
caited a "Qquick"™ bplock or procedure. Second, the compiler
can builu argument lists to quick proceaures at compile
tine, it the arguments have constant addresses known at
compile time. These two optimizations greatiy reduce the
cost of calil statements ana function referencese.

1.1 Determining the "Quiékness" of a Block

The Muttics PL/I complier goes through a3 two stage
process to cetermine wnich {procedure or begin) blocks
can be Juicky that is which ones neesd not obtain stack
framese. The first stage excludes biocks from being
Quitk Dbecause of their properties. The following
propertles can make a block non-quicke

o] it 1s the external proceagure bilock

0 it is an ON=-unijt

o] it has I/70 statements

o] it has format statements

0 it has UONy, revert, or slignal statements

o) it has automatic variaofes with expression extents



10.¢

Page 11
o] it has an entry that is assignea to an entry
varlable or passed as an argument
o it has an entry with a star-extent return vaiue
0 it has an entry with a star-extent parameter that

is callea wlith the cdrresponaing argumant being an
expression whose length is non-constant

0 it has an entry that [s referencea in the argument
{ist of such a call after the aforementionad
argument

In the sz2cona stages tha2 compifer uses a graph of
the catils between Dliocksy, to determine which of the
remaining eligible blocks can be aquicke The algorithm
used in this stage is an iterative one basad on the
constraint that a quick block may use the stack frame
of one ang onily one non=-guick block and thus may
etfectively pe invoked from only one non-quick DilocCke.
In tacty, the algorithm states that a quick block may be
invokead from only one stack frame, and an invocation
from a Quictk block is considered an invocation from its
owner®s stack frame.

A user can uetermine which bdlock has been made
Quick by examining the symbols tistings produced by the
compiler. In the section markeay "STORAGE REQUIREMENTS
FOR THIS PROGRAM™ is a list of alt the blocks in the
program,. If the tine for a particular block contains
the wordasy ‘“shares stack frame of', that block is
quicks

Determining which Catls and Function References Use
Constant Argument Lists ™

In generating a Qquick procedure cally, the Mulitics
PL/] compiier can often generate a constant argument
list if the addresses of the arguments are known at

compile time. This saves the cost of executing
instructions to set up the argument list at runtime,.
At tnls time the following constraints must De

satisfiecu for the compifer to generate a constant
argument Jists

o the qQuick procedure must contain no non=-quick
ol ocks ‘
0 the stack frame of the caller must be smaller than

164384 words

o the arguments must be constants, expressions with
operatorssy buiitin referencesy, function



Page

ii.

12 MTB-135

referencess or automatic variables

o) all automatic arguments must be atlocatea in the
stack frame of the caller

0 all automatic aryuments must have constant extents

0 atl subscripted arguments must have constant
subscripts

Using If Statements

In hanuiing if statements containing logical operators,
suzh as

If x = ¢t p “=nulil & x & 3 < 2
then call aj

if z > 3 & a = null & loaded
then call by

thz present Multics PL/I compiler generates code that
evaluates the entire logical expression bpefore making the
Jumpsy even though evaluation of one item of a logical
opzrator might suffice to decide the result., In addition,
coaverting the resuit of a refational operator to pit (1)
regquires a call! to a very short seguence in pli_operators_.
{(This sequence averages about fthree insfructions.) Tnis
causes o conflict between considerations of speec ana style.
While the above examplaes may be easler to reaa and debug,
the following examples would be faster:

it x = U then go to tao;
it p 7= null then go to labj
it x ¢ 3 <« 2
then
labs call aj
or
it z > 3
then if g = nullt
then if losaed
then call bj

Resolving such a contiict is an individual decision. In any
particuiar casey one has to jJuuge whether the extra speed of
the iatter approach is worth the tack of cltarity and
structure it entailse. Obviousiy the answer will differ from
Case to case and proygrammer to programmers.

There are plans to improve the PL/I complier®s hanatling
of such if statements in a futur2 implementation so that the



MTB-135

Page 13

st~ucturea approach will get more atficlent coce.

12. Other Constructs That Are Costily or DangerodJds

0

4]

default statements
multiaimensional arrays wlth star bounus
arrays of elements of star extents

programs requiring a stack frame of more than
16,384 words



