Multics Technical Bulletin MTB-129

Tos Distribution

Fromt Jerry A. Stern and Jerolid C. Whiltmore

Date: October 29, 1974

Subjectt I/0 Daemon Modificatlions for the Access Isolation
Mechanism

Intreduction

This MTB describes proposed changes to the I/0 Daemon in support
of the Access Isolatlon Mechanlsm. The reader 1Is assumed to be
familiar wlith the basic principies of the Access Isolation
Mechanismy, as well as the relevant terminology, detined in
MTB'iDﬂ-

The modlfications suggested here werey, for the most part,
orlginally proposed to satisty certaln requirements of the Air
Force Data Services Center. However, as wlth other teatures of
the Access Isolation Mechanism, most of the new features proposed
for the I/0 Daemon wili be of general use at many Multics sites.
The following four requlrements are speciflcally considered in
this MTBt

1) It must be possible to Instruct a device drliver process to
handle only requests of a specified range of access classesS.

2) The head sheet ftor each printout must contain a banner
identlifylng the access ciass asslgned to the printout.

3) A user must be able to specifyy, by means of dprint command
options or defaultss that header and footer labels be placed
on each page of printed output.

4) Each printer driver process must be capable of preparling an
"“accountablility torm"™ for each plece of printed output. (In
the case of AFDSC, an accountabliility form will be used to
officially record the transmission of a classiflied printout to
an appropriately authorlzed wuser. At other sites, forms of
somenhat different format may be used for a simitar purpose.)

Since the wuse ot the above features iIs at the discretion of the
indlvlidual site or usery no change Iin I/70 Daemon operation wiltl
result unless desired.

Multics projlect Internal working documentation. Not to be
reproduced or distributed outside the Multics prolect.

-1o

MYB-129 Muttics Technlcal Bultletin

In the discussion which followsy, the implicatlons of each of the
above four requirements Is examinea and an Iimplementation |Is
desCribed. Afterwards, some access control problems posed by the
Access Isoilation Mechanism for the I/0 Daemon are [nvestlgated.
Finally, a summarization of all proposed changes Is presented.

Access Class Ranges for Qewice Drivers

It Is desired that an access class range be associated with each
device drlver process and that only requests within thls range be
handiea by the driver. In order to understand the meaning and
Impllcations of this ideay It is worthwhlle to brlefly revien
some features of the 1/70 Daemon organjizatlon and operation.

The collection of user requests into queues and the subsequent
distribution of these requests to driver processes revolves
around the notjion of device classes.s When a user submits an I/0
requesty, he elither explicitiy specltles a device class or else a
detault device class 1Is assumed. The device <class uniquely
determines a set of queues, each of which represents a different
prioritye. Such a set of queues will be referred to hereafter as
a “queue group.* Each driver process 1Is uniquely associated with
a device class and hence with a queue group. Drivers of the same
device <class are considered to be equilvalent in the sense that
any one of them can handle any request from the appropriate gqueue
groups. Thuse when a driver informs the coordinator that it is
ready tor worky the coordinator simply selects the oldest request
ot highest priority from the queue group assoclated with the
driver®s device class.

With the advent of the Access Isolation Mechanismy, each driver
process nill be assigned a speciflc authorization. To the
greatest extent possible, drlver processes wllil not make use of
any system privilegess Therefore, iIf we were to allow arivers of
different authorizations fto belong to the same device class,
these drlvers coulid no longer be consldered equlvafent, A
segment accessible to one ot the drivers might not be accessible
to another. Hence, in order to preserve the meanling of device
classesy all drivers of the same device class will have the same
authorizatlion. Cleariy, this authorization defines an upper
access lIimit for the device class.

A simple way to proceed in achieving the deslired access ranges
for arivers Is to assoclate the access range with the device
class. Ignoring the detalis of this approach for the moment,
only one conceptual problem is evident. WHhere In the current
system there now exlists one device class and one queue group for
a category of devlicesy, e+.g.y central site printers, there would
be perhaps several device classes and several correspondling queue
groups In the new schemey, each having a different access range,

-P-

Multics Technical Bulletin MTB-129

Such an arrangement {s by no means technically infeasible, but it
does create Inconvenlences for the user and the operatlons staft.
The user certalnly does not wish to concern himself with which
access range (s appropriate for his request. Thls should and
could be determined automatically by the system. However, a more
serious problem arises over the fact that the access ranges
associated with a device class are intended to be dynamically
reconfigurablie. For example, a site with three printers may
ordlnarily have three device classes with three different access
ranges for these printers. If one printer should faily however,
it may be desirablie to reconfigure the access ranges of the
remalning two printers so as to process the requests formerly
handled by the fnoperative printer. Unfortunately, there is no
easy way to accompllish this reconflguratlon since the requests
have alreaady been segregated [nto separate gueues baseg on the
original three access rangese.

In order to solve the problem described aboveys, It |[Is proposed
that the one-to~one mapping between device classes and queue
groups be changed to a many-to-cne mapping. In other words, it
will be possible for one queu2 group to sServe many device
classes. Actually, It is convenient to think of the queue group
as definiklng a ™“static™ device class which Is ldentical to the
current notion ot device classe. Hhen a user submits an 1I/0
request, he will speclfy (expliclitlty or implicitly) the static
devlice ciass. Driver processes ulii be associated wlith “dynamjc*
device classesy many of which can dram requests from the same
static device classs Thus, whenever It s desired to reconfigure
the access ranges of the dynamlc device cliassesy no reshuftiing
of the queues Is necessary.

Although the change described above may sound rather severe, this
approach has been chosen for the very reason that [t requires
relatively few changes to the 1/0 Daemon software. As far as the
relationshlp between the coordinator and drivers ls concerned,
the Implementation of device classes Is baslcally unchangea. A
new paranmeter for the I/0 Daemon parms file will be defined which
permits specificatlon of the access range of a (dynamic) device
ciasse Alsoy a second new parameter wllil be definea whlch
permits specification of a queue group name for a device class.,
When the parms flle is examined during the iInitiallzatlion of the
cooralnator, all device classes sharing the same queue group will
be threaded ftogether. Furthermore, 3 new data base, called the
gqueue group table, will be constructed which contalns one enftry
for each queue group. Each entry wil! have a pointer to the heaq

of the threaded list ot assoclated device classes as well as
pointers to (or Indexes of) the message segments In the queue
Groupe Each device <class entry will contain a pointer to its

associated queue group entrye.

Aslide from the extra inltialization describea above, only one
other section of the I/70 Coordinator will require significant

-3-

MTB=-129 Multtics Technical Bulletin

modification. {(Note that no changes to the drivers are necessary
to Implement access class ranges.) The subroutlne responsible
for readling requests from the queuesy, called find_next_request_,
must understand the device class to queue group mappings. When

given a3 device classy flnd_next_request_ will ascertaln the
appropriate queue group and read the oldest request from highest
priority non-empty queue (as it does nowl. It must then

determine 1f the access class of the request message Is within
the access range of the specified device class. If sos the
request s returned as usual. It not, tfind_next_request_ will
scan the threaded 1ist of device classes for the queue group
until tinding a device class With the proper access range. The
message ID of the request will then be added to a “waiting llst*
for that device class. The reading of messages, and the adding
of these messages to waiting lists, wlil continue until a message
is found within the access range of the specitfled device class or
untit the queue group is exhaustedes Thus, It can now be seaen,
that the algorithm folloned by flna_next_request_ 1Is to first
check the walting llst ftor a device class and,y, it this Is empty,
to then begln reading messages from the assoclated queues.

The etfect ot the above scheme (s to delay the binding between a
request ana a dynamic device class untl! the moment the request
Is read from the queues. Furthermore, thils binding can ailways be
reconfigured, even for requests In the waiting lists. This is
accompl ished by simply changing the parms flle and then
reinitlalizing the coordinator. The old waltling (ists are
discarded and new ones are created for the new dynamic device
classes.s No Juggling of the queues [Is ever necessary. Note also
that at instaltlations which contlnue to maintain a one-to-one
correspondence between queue groups and dynamic device classes,
no requests wilil ever be added to a walting tist.

Access Llass Banners

Just as the access class stored in a branch Is used Internaliy to
protect segments, so too will the access class banner on a head
sheet be used externally to protect printouts. The access class
banner provlides an administrative control over the distributlon
of printouts which supersedes the exlisting discretionary controls
{lee. person and project name banners).

A general rule of the Access Isolation Mechanism dictates that an
object Is assignhed an access class equal to the authorizatlion of
the process that created It A strict interpretatlon of this
rule would suggest that the access class assigned to a printout,
l.e.y the access class banner, should equal the authorization of
the ariver process that created [te Unfortunately, this scheme
would result in widespread over=-classificatlion of printouts silnce
the arlver process authorization Is always at the top of the
access range of requests handled. Although some sltes might be

-l

)

Mul tics Technical Bulletin MTB-129

willing to accept this drawback In the Interest of maximum
security, it seems likely that most sites would ftind It extremely
oblectlonable. Since the driver process Is really Just a trusted
intermedlary which <creates a printout on behalt of a user
processy It seems loglcaly and a great deal more practical, to
choose fthe authorizatlon of the requesting user process as the
access class for a printoutse Inh orcer to satisfy those sltes
which may prefer the more conservative cholce, 3 new parameter
will be defined for the I/0 Daemon parms flile which allows an
Installation to specify a minimum access class banner for each
device class. If this parameter Is not specified, the default
minimum will be the bottom of the device class access range.

The new format for a head sheet wiili Include a third Iine of *blg
letters" containing the printout access classe. Actualiy, a
single blg~letter 1lne cannot be expected to hold an arbitrarily
long access ciass stringes Therefore, only the first component of
the access class string will be printed In big tetters. Beneath
thiss the full access class will be printed iIn regutar type.
This implles that at sites using sensitivity levels, the access
banner will be 3 level name. At sltes using categorlies but not
levelsy the access banner will be the flrst category name.
However, if an access class string is nully, as might be desired
for the system low access classy then no access class banner wilf
be printed. This Impliesy, of coursey, that at sites using nelther
levels nor categories, the access banner will always be omitted.

Page Labels

The requlrement for page header and footer labels to be added to
printed output by the I1I/70 Daemon stems from the neea to place

access ciass labels on each page of certaln printouts. However,
it Is Intended that this teature be generallzed to allow a user
to supply any arbitrary character string for the ({(abels. This

kind of feature has actually been considered before outside the
context of the Access Isofation Mechanlsm. The dprint message
format already provides space for a page header string, although
the mechanism itself has not yet been implemented.

Several optlons will be added toe the dprint commana to support

the page label feature. It the user simply wishes to use the
segment access class for the page labely he wlll speclfty the
*-access_Ilabel" option. It the user wishes to supply hls own

fabel he will specify the "-label"™ option followed immegiately by
the jabel stringe. It nelther of these optlons is specltlied,y, then
no labels wlll be addea uniess the site has chosen to adad fabels
by default. This will be indicated by a new parameter in the I/0
Daemon parms flie. The eftect of this default tabellng will be
an Implicit *=-access_Jlabel™ option for ati aprint commands

MTB-129 Multics Technical Bulletin

issued. However, a user can overrjide the default label with the
"*-label"™ option or can request no labels by specifying the
“=-no_labe!*" optlone.

Impliementation of the labeting feature would best be accompllished
by providing a new oraer call to the printer DIM for specifying
fabels. This, in turn, would require modifications to the
printer DOCM which does essentially ail of the work for the
printer DIM. It iIs Intended that the labels be placed in the top
and bottom margins of each page so as not to disturb the format
of the output. Because a number of printer DIM enhancements are
already In progressy 1t wlill most (llkely not be practical to
begin work on the I|abel feature in the very near future.
Theretore, In order to meet the deadlilne for dellvery of this
feature to AFDSCy an Interim solution may be adopted. A new
I0OSIM can be provided for the printer driver process which, when
spliced in before the printer DIM, will insert labels. By use of
the "noskip™ mode In the printer DIM, labeils can still be placed
in the top and bottom page marglns as desired. Obviousiys this
second approach is less efflclent than the first ana therefore
will only be used temporarjly It at all.

Accountabliiity Forms and Qriver Control Yermipal

The reqgqulrement for accountabliity torms Is primarily to provide
a means of recording and controiilng the distribution of
classiflied output, It also serves a direct securlty functlion |in
the separation of output. The distributlon staff can check to be
sure that there ls one piece of output (e«.gey listling, card deck)
for each accountablliity form. Thls check wilt prevent a
maliclous user from [mbedaing headers and ftrallers within hls
data which would fool the distribution staff Into believing a
phoney access class banner. A separate termlnal from the current
daemon console must be used to prepare the accounftabillty forms
and it should be located near the associated device.

A byproduct of the accountapblliity form terminal Is its abillty to
also function as a dariver control terminale The usefulness of a
driver control terminal stems from physical hardware arrangement.
Some sites locate one or more 1{ilne printers (or other 1I/0
devices) In physically separated areas from the central computer.
However, the daemon driver console must remaln in the central
computer room to prevent priviieged access from falling 1In the
hands of untrusted personnel. On the other handy the local
device operator |s in the best position to determine which
requests should be restartea, etcs Another terminal physically
focated beside the device could allow the device operator to
enter benign operational requests wlthout compromising security
and without requlring asslstance from central operatlions. The
use of this control/accountability form terminal would, of
course, be at the option of the site.

\

Muitlcs Technical Butletin MTB=-129

To implement this new teature we will add a new per device class
parameter to the I0 daemon parms flle which indicates whether a
control terminal is required for the driver. The default for an
unspeclifled parameter will be *not requlred.” HWhen the termilnal
ls not required, the drlver process wliil operate exactly as it
does foday.

WHhen a control fterminal lIs required, the dariver wili walt for a
tferminal to be dlaled to the process before telling the 1I/0
coordinator that [t is ready t0o process requests. However, the
current Impliementatlon of the dlal command s too restrictive to
be wusefu! iIn this contexte. It only allows one iInstance of a
process_group_ld to request dlaled devices. Under the current
impltementations drivers and the I0 coordinator are logged Iin as
I0.SysDaemon. Hence, we must implement the changes to the dlal
command suggested by T.He.VanVieck In MTB 013.

During normal operation of the driver, the control terminal will
print one accountablilty form for each copy of requested output
from the driver process. The form may contaln information which
describes? the requestors header and destination options,
sequence number, banner access classy date-time, Installation,
pathname and access class of segment. (Notet The module which
formats the output to the control terminal will be sjite
reptaceable. The normal moguie will print the same Information
provided by the I/0 Daemon today which does not require a form.)

A “start"” command must be Issued from the control terminal before
processing wiil begin to allom the device operator to align the
accountabliity forms being used. A command to print a sample
form will be provided for this purposes Since the output to the
control terminal may be formatted to preprinted forms, commands
may not be entered without destroyling the atlignment. Theretore,
commands wlil be honored only after the device operator presses
“quit™ on the control terminai. This allows for reaftignment
before resuming operation {(we will reset the write buffers).

The controi terminal will never be allowed to enter arbitrary
commands for securlty reasons. Also, we must restrict the set of
commandsy normaily acceptable to the ariver, which may be entered
from this terminals.s Specificaliy, the commands return, debug,
detach, attach,y, and reattach will not be honored from the controt
terminal. The other commands will not create security problems
{ieees starty, cancels killy restart, save, reinit, logouts sample
(new)).

We con®t want to remove the site operator®s abliity to controli

the driver, Theretfore, when the driver expects Inputy Lt wlll
first took for commands from the master driver console anag then
from the control terminale. {(Control terminal quits will be

7=

MTB-129 Muttics Technical Bulletin

disabled while the master terminal has confrof of the process).
The master console wlil also be able to Indaicate that further
input and quits from the control terminal be accepted or
rejected.

It the control terminal gets disconnected, the master console
will be notified and the driver wilil walt for Instructions. The
operator may request that the driver contlnue without the control
terminal or that the driver walt for another dialed terminal
{reinit).

A remote driver which communicates to a device over high speed
phone lines wili also be able to utillze a control terminal.
This,y, of coursey wWould reguire a second phone Iline. Driver
commands may be Input from the control terminal as described
above. Commands which may be entered from the remote device
itself (e«gey ftrom cara reader) must be subject to the same
restrictions as commands from the control terainal for security
reasons.

Access Control Considerations

The preceaing sections described changes to the I/0 Daemon to
support certain new features, This section, however, primariily
describes changes necessary to cope wlth the Impact of the Access
Isotlation Mechanism on the 170 Daemon environment. Also, an
existing security problem Is discussed.

The I/0 Coorglnator, by its very nature, cannot operate strictiy
within the rules of the Access Isolation Mechanism. Since [t
handies information of all access classesy It witl run wlth a
system-high access authorizatione. In order to send wakeups to
driver processesy it will have the ipc privilege ftliag enabled.
In order to create ana modlfy segments of varylng access classess
it will make use of privileged access to segments and
directories. In order to read and delete messages of all access
classesy the coordinator will have priviieged access to message
segments.

Several segments exist in lo_daemon_dir whlch hold messages and
message descriptors read by the coordinator from the message
segment queues. Slince these messages wlll range In access c¢lass
up to system hlgh, they must be protecteda In a system hlgh
segment after extraction from the message segments. Therefore, a
subdlirectory of lo_daemon_dir wlll be created having 3
system-high access classes In this alrectory the coordlnator will
create the request_seg {(used to hotd messages), the req_desc_sSeg
(used to hold message descriptors)y, and the new walting Iist
segment.

Multics Technicail Bulletin MTB-129

Unilike the coordinator, driver processes arey for the most part,
well-sujted to abiding by the restrictlons of the Access
Isotlation Mechanisme. Therefore, a number of minor changes will
be made to the I/0 Daemon to avoid the unnecessary use of speclial
access privitleges.

The current scheme for Initjallzing driver processes wil!l require
slight modificatlons. Each driver process attempts to verlfy
that a coordlinator process doessy Iin fact, exlist by locking a
coordainator lock kept in a special segment. It the lock iIs found
to be vaildly locked,y, then a coordinator exists. Howevery, i1t a
driver succeeds In tocking the locky, then no coordinator exists.
Unfortunately, locking the lock means writing In the segment,
Since drilvers wlll have differlng authorlizations, they cannot all
write In the same segment, Therefore, the drlivers will instead
copy the lock to a private data area and then attempt to lock the
copy. This works even better than the present scheme since |t
eflminates the need for a secondary lock now used to prevent
interference among drivers.

The Initlalization ot driver-coordinator communication will also
requlre some small changes. All drivers create a temporary
“communication™ seghent containing information for the
coorginator in lo_daemon_dire. Due to differing darliver
authorjizations, this will no longer be possible. Theretore,
these temporary segments wlil Instead be created In each driver®'s
process directorye. Upon receliving a "new driver® wakeup from a
drivery, the coordinator examinaes the communlication segment,
valldates the driver, and then creates a *drlver status™ segment
used for future communication. The driver status segment, now
created In lo_daemon_dir, must be writable by the driver process
and therefore must have an access class equal to the drlver's
authorlzation. Since driver status segments of differing access
classes cannot coexist in a3 single directory, the coordinator
wlll create a separate upgraded subdirectory In lo_daemon_dir to
hclia each drilver status segment.

As mentioned above, messages and wmessage descriptors willil be
stored in segments of system high access class and hence will not
be accessible to all drivers. Message descriptors are already
copled to the driver status segment by the coordinator each time
a driver 11s given a request. Currentiy, the driver reads the
message jitselt directly ftrom the request_seg. Since this will no
fonger be possible, the message wlll also be coplied to the drijiyer
status segment by the coordinator at the same tlme as the message
descriptor.

To this polnt, every effort has been made to ensure that arlver
processes would not requlire the use of any special access
privileges. Unfortunately, there are two cases In which the use
of such privileges seems unavoidable. Following each dprint, a
driver process executes a program <callied *“charge_user_" which

-Q-

MTB-129 Mulitlcs Technlcal Bulletin

updates accounting information in the pdt entry of the requesting
user., Since pdt segments have system-low access classes, yet
driver authorlzations may range up to system high, it will be
necessary for the drivers to obtain privileged access to pdt®s,
The other circumstance In which speclal access 1Is required Is
nithin the message routing DIM. Alil daemons attached via the
message routing DIM must write Iin a common segment. Therefore,
mrdim_ wlil be modlfled to detect the need for special access and
to attempt to obtaln special access.

A security probiem exists due to the ftact that the coordinator
process ID and event channel ID are stored In a segment
accessible to all processesSe. This makes it possible for any
process to impersonate a driver, l.e.y, to dralin requests from the
queues and to Issue various commands to the coordinator such as
“restart.™ This problem 1is easily corrected simply by setting
the ACL ot the segment containing the coordinator event channel
ID to aeny access to ali but I0.*.* .,

RQetalled List of Changes

A. For Access Ranges

1. Change lodc_%init to create the queue group tables/waiting
list segment and to store a pointer to this segment |In
lodc_static.

2. Change jodc_parse_parms_ to recognize the new *access_range"
and "queue_group" keywords. Initlallze the queue group table
and thread together dJdevice class table entries of the same
queue group. Place In each device class table entry the
offset of the associated queue group table entry.

3. Change lodc_3new_drjiver to check if a new driver Is the filrst
of 1Its device class and [f this device class Is In turn the
first of Its queue group. If so, open the message segments
in the queue group.

e Change find_next_request_ to use the gqueue group table and to
manage the waiting lists as described.

5e Change save_request_ to use the queue group table to
determine from which message segment a given message Sshould
be deleteda. .

Be. For Bannerss?

1. Change head_sheet_ to print the access class banner.

-10-

Multics Technical Bulletin MTB8-129

C.

1.

2.

D.

1.

2.

3.

b

For Page Labetst

Change the dprint command to recognize the new -access_label,
~-labelsy and ~no_tabel options.

Change lioac_parse_parms_ to recognize the new “label"
parameter which causes labels to be added to printouts by
defaulte.

Change output_request_ to check for the label option and fto
make the appropriate order call If it Is requested.

Change printer_ailm_ to recognlze a new “{abel"™ order cailil and
to pass this on fto the printer DCM.

Change printer_gcm_ to recognize the Jabel order call and to
Insert labels in the top and bottom page margins.

If changes &4 and 5 cannot be made soon enough to meet the

delivery deadliney, then [mplement a new IOSIM to add labelis
as described.
For Accountablililty Forms/Device Control Terminals

Change lodc_parse_parms_ to recognize the 'control_terminal’
keyword.

Change lodd_static to hold control terminal attachment data.

Change remote_8init and io_daemon_ariver_ to attach control
terminal if requirede.

Change lodd_gult_handier to conditlonally recognize Input
from control terminal and implement sample command.

Change input_cmd_ and remote_ to separate commands from
master and control terminal.

Change output_request to call accountabillty form printing
module 1t a control termlnal Is attached.

Change the answering service dlal facility per MTB (13.

For Access Control Considerations?

Change lodc_init to enable the necessary speclal access
priviieges tfor the coordinator. Create a system high
directory in which to place request_seg, req_desc_seg, and
the queue group table segment.

-11-

MTB-129 Multics Technical Bulfetin

2e

3.

Change lod_overseer_ to copy the coordinator lock before
testing it for a driver process.

Change driver_init_g$signal to creata the driver_comm Segment
in the process directory and to store the process
authorization In the driver_comm structure,

Change lodc_%new_drjiver to create an upgraded dlrectory and
hold each driver status segment.

Change iodc_g$driver_signal to copy each dprint message to the
driver status segment.

Change charge_user_ and mrdim_ to wuse privileged segment
access as descr ilibed.

