
Multics Technical Bulletin 

Toi Distribution 

Froma Jerry A. Stern ~nd Jerold c. Whitmore 

Oatea October 29, 1974 

SubJect1 I/O Daemon Modifications for the Access Isolation 
Mechanism 

This HTB describes proposed changes to 
of the Access Isolation Mechanism. The 
familiar with the basic principles 
Hechanism, as well as the relevant 
HTB-1uo. 

the I/O Daemon in support 
reader ls assumed to be 
of the Access Isolation 
terminology, defined in 

The modifications suggested here were, for the most part, 
originally proposed to satisfy certain reQulre•ents of the Air 
Force Data Services Center. However, as with other features of 
the Access Isolation Hechanism, most of the new features proposed 
for the I/O Daemon will be of general use at many Hultics sites. 
The following four requirements are speciflcal'ly considered in 
this HTBI 

1> It must be possible to instruct a device driver process to 
hanale only~ requests of a specified range of access classes. 

2> The head sheet for each printout must contain a banner 
identifying the access class assigned to the printout. 

3) A user must be able to specify, by means of dprlnt command 
options or defaults, that header and footer labels be placed 
on each page of printed output. 

41 Each printer arlver process must be capable of preparing an 
"accountability for•" for each Piece of printed output. <In 
the case of AFDSC, an accountabitlty form "ill be used to 
offlclally record the transmission of a classlfled printout to 
an appropriately authorized user. At other sites, forms of 
some•hat diff~rent format may be used for a siailar purpose.) 

Since the use of the above features ls at the dlscretlon of the 
individual site or user, no change ln I/O Daemon operation will 
result unless desired. 

------------------------------------ ·-------~~~~~ 

Hultlcs proJect internal working documentation. Not to be 
reproduced or dlstrlbuted outside the Hultlcs proJect. 

-1-



HTB-129 Huttlcs Technical Bulletln 

In the discussion which follows, the implications of each of the 
above four reQulrements ls examlnea and an lmplementatlon ls 
described. Afterwards, some access control problems posed by the 
Access Isolation Mechanism for the I/O Daemon are investlgated. 
Finally, a summarlzatlon of all proposed changes ls presented. 

It ls desired that an access class range be associated "1th each 
device arlver process and that only reQuests wlthln thls range be 
handlea by the driver. In order to understand the meaning and 
lmpt !cations of thls idea, it ls worthwhile to brlefty review 
some features of the l/O Daemon organlzatlon and operation. 

The collection of user reauests into queues and the subsequent 
distrlbutlon of these reauests to arlver processes revolves 
around the notion of device classes. When a user submits an I/O 
reauest, he either explicitly specifies a device class or else a 
default aevlce class ls assu•ed. The device class unlQuely 
deter•lnes a set of Queues, each ~f which represents a different 
priority. Such a set of Queues wlll be referred to hereafter as 
a •Queue group." Each driver process ls un1Quely associated "1th 
a device class and hence Mith a queue group. Drivers of the same 
device class are considered to be eQulvalent in the sense that 
any one of them can handle any reQuest from the appropriate Queue 
qroup. Thus, when a driver informs tha coordinator that lt ls 
readv for work, the coordinator slmplv selects the oldest request 
of highest priority from the queue group associated with the 
drlver•s device class. 

Wlth the advent of the Access Isolation Hechanlsm, each driver 
process will be assigned a specific authorization. To the 
greatest extent possible, driver processes will not ~ake use of 
anv system prlvlleges. Therefore, if we were to allow arlvers of 
different authorizations to belong to the same devlce class, 
these drivers r,ould no longer be considered eQuivalent. A 
segment accessible to one of the drivers might not be accessible 
to another. Hence, in order to preserve the meaning of device 
classes, all drivers of the same device class will have the same 
authorization. Clearly, this authorlzatlon defines an upper 
access llmlt for the devl~e class. 

A simple way to proceed in achieving the desired access ranges 
for arlvers ls to associate the access range with the device 
class. Ignoring the details of thls approach for the moment, 
only one conceptual problem ls evident. Where ln the current 
system there now exists one device class and one Queue group for 
a category of devices, e.g., central site printers, there would 
be perhaps several device classes and several corresponding Queue 
groups ln the new scheme, each having a different access range. 

-z-



Multics Technical Bultetln 

Such an arrangement is by no means technically infeasible, but it 
does create inconveniences for the user and the operations staff. 
The user certainly does not wish to concern himself with which 
access range ls appropriate for his reQuest. This should and 
could be determined automaticatly by the system. However, a more 
serious problem arises over the tact that the access ranges 
associated with a device class are intended to be dynamically 
reconflgurable. For example, a slte with three printers may 
ordinarily have three aevlce classes with three different access 
ranges for these printers. If one printer should fall, however, 
it may be desirable to reconfigure the access ranges of the 
remalnJng two printers so as to process the reQuests formerly 
handled by the inoperative printer. Unfortunately, there ls no 
easy way to accomplish thls reconfiguration since the reQuests 
have alreaav been segregated lnto separate Queues basea on the 
original three access ranges. 

In order to so Ive the prob I em descr !bed above• 1t 1 s proposed 
that the one-to-one mapping between device classes and Queue 
groups be changed to a many-to-one mapping. In other Mords, it 
will be possible for one Queue group to serve manv device 
classes. Actually, it ls convenient to think of the Queue group 
as defining a "static" device class which ls ldentlcal to the 
current notion of device class. When a user submits' an I/O 
reQuest, he will specify (expllcltly or lmpllcitlv> the static 
device class. Driver processes Milt be associated with "dynamic" 
device classes, many of which can draw reQuests from the same 
static device class. Thus, whenever lt ls desired to reconfigure 
the access ranges of the dynamic device classes, no reshuff llng 
of the queues ls necessary. 

Although the change described above may sound rather severe, thls 
approach has been chosen for the very reason that lt reQuires 
relativetv few changes to the I/O Daemon software. As far as the 
relationship between the coordinator and drivers ls concerned, 
the lmplementatlon of device classes ls basically unchangea. A 
new paraaeter for the I/O Daemon parms file wll I be defined •hlch 
permits specification of the access range of a (dynamic> device 
class. Also, a secona new parameter wlll be definea which 
permits speclflcatlon of a queue group name for a device class. 
When the parms file ls e~amined .during the inltlallzatlon of the 
cooralnator, all device classes sharing the same Queue group will 
be threaded together. Further•ore, a new data base, called the 
aueue group table, will be constructed which contains one entry 
for each aueue group. Each entry wlll have a pointer to the heaa 
of the threaaed list of associated device classes as wel I as 
polnters to (or indexes of) the message seg•ents in the Queue 
group. Each device class entry will contain a pointer to its 
associated queue group entry. 

Aside from the extra lnitiallzatlon described above. only one 
other sectlon of the I/O Coordinator will reQulre signlflcant 

-3-



HTB-129 Muffles Technical Bulletin 

modification. (Note that no changes to the drivers are necessary 
to implement access class ranges.t Tna subroutine responsible 
for reading reQuests from the queues, called flnd_next_request_, 
must understand the device class to queue group mapping. When 
given a device class, find_next_reQuest_ will ascertain the 
appropriate Queue group and read the oldest request from highest 
priority non-empty queue Cas it does now). It must then 
determine if the access class of the request message ls within 
the access range of the specified device class. If so, the 
request ls returned as usual. If not, find_next_request_ will 
scan the threaded list of device classes for the Queue group 
until finaing a device class With the proper access range. The 
aessage ID of the request will then be added to a •waiting list" 
for that device class. The reading of messages, and the adding 
of these messages to waiting lists, will continue until a message 
ls found within the access range of the specified device class or 
until the queue group ls exhausted. Thus, 1t can now be seen, 
that the algorithm follo"ed by flna_next_request_ ls to first 
check the waiting list for a device class and, if this ls e•pty, 
to then begin readlng messages from the associated Queues. 

The effect of the above scheme ls to delay the binding bet"een a 
reQuest ana a dynamlc device class untll the moment the request 
ls read from the Queues. Furthermore, this binding can always be 
reconfigured, even for reQuests in the waiting lists. This ls 
accomplished by simply changing the parms file and then 
reln1t1al1zlng the coordinator. The old waiting lists are 
discarded and· new ones are created for the new dynamic device 
classes. No Juggling of the Queues ls ever necessary. Note also 
that at lnstal tatlons which continue to maintain a one-to-one 
correspondence between Queue groups and dynamic device classes, 
no requests wi 11 ever be added to a 1111a1 ting' I 1st. 

Just as the access class stored 1n a branch ls used internally to 
protect segments, so too wlll the access class banner on a head 
sheet be used external1y to protect printouts. The access class 
banner provides an admlnistratlve control over the dlstrlbutlon 
of printouts which supersedes the existing discretionary controls 
(i.e. person and proJect name banners>. 

A genera• rule of the Access Isolation Hechan1s• dictates that an 
obJect ls assigned an access class eQual to the authorization of 
the process that created lt. A strict lnterpretatlon of this 
rule would suggest that the access class asslgned to a printout, 
I.e., the access class banner, should eQual the authorlzatlon of 
the arlver process that created it. Unfortunately, thls scheme 
would result in widespread over-classification of printouts since 
the arlver process authorization ls alwavs at the top of the 
access range of reQuests handled. Although some sites might be 

-4-



Hultlcs Technlcal Bulletin HTB-129 

wllllng to accept thls arawback ln the Interest of maximum 
secur1tv, it see•s likely that most sites would find lt extremely 
obJectionable. Since the driver process ls real IV Just a trusted 
lntermealary whlch creates a printout on behalf of a user 
process, it seems logical, and a great deal more practical, to 
choose the authorlzatlon of the reQuestlng user process as the 
access class for a printout. In oroer to satisfy those sites 
which •av prefer the more conservative choice, a new parameter 
will be defined for the I/O Daemon parms flle which allows an 
lnstallatlon to specify a mlnlmum access class banner for each 
device class. If this parameter ls not specified, the default 
minimum wlll be the bottom of the device class access ~ange. 

The new format for a head sheet wlll lncluae a third line of "big 
letters" containing the printout access class. Actually, a 
single big-letter llne cannot be expected to hold an arbltrarlly 
long access class string. Therefore, only the first component of 
the access class string wlll be printed ln bJg letters. Beneath 
this, the full access class wlll be printed in regular type. 
This implies that at sites using sensltlvlty levels, the access 
banner wlll be a level name. At sltes using categories but not 
levels, the access banner wll I be the first category name. 
However, if an access class string ls nul 1, as might be desired 
for the system low access class, then no access class banner will 
be prlntea. Thls lmplles, of course, that at sites using neither 
levels nor categories, the access banner wlll always be omitted. 

The requirement for page header and footer labels to be added to 
printed output by the I/O Daemon stems from the neea to place 
access ~lass labels on each page of certain printouts. However, 
It ls Intended that this feature be generalized to allow a user 
to supply anv arbitrary character string for the labels. This 
kind of feature has actually been considered before outside the 
context of the Access Isolation Mechanism. The dprlnt message 
format already provides space for a page header string, although 
the mechanls• itself has not vet been implemented. 

Several options wll I be added to the dprint commana to support 
the page label feature. If the user simply wishes to use the 
segment access class for the page label, he will specify the 
"-access_label" option. If the user wishes to supply his own 
label he will specify the "-label" option followed immediately by 
the label string. If neither of these optlons ls specified, then 
no labels will be aadea unless the site has chosen to aaa labels 
by default. This will be indicated by a new parameter ln the I/O 
Daemon parms file. The effect of this default labeling will be 
an Implicit "-access_label" option for all aprint com~ands 

-5-



HTB-129 Hultlcs Technical Bulletin 

lssuea. However, a user can override the default label with the 
"-label" option or can reQuest no labels by speclfvlng the 
·-no_label" option. 

I•ple•entatton of the labeling feature would best be accomplished 
by providing a new ~raer call to the printer DIM for speclfvlng 
labels. This, in turn, would reQulre modifications to the 
printer OCH which does essentially all of the work for the 
printer OIH. It ls lntenaed that the labels be placed ln the top 
and bottom margins of each page so as not to disturb the format 
of the output. Because a number of printer DIH enhancements are 
alreadv Jn progress, It wlll most llkelv not be practical to 
begin work on t·he label feature in the very near future. 
Therefore, ln order to meet the deadline for delivery of this 
feature to AFDSC, an Interim solution may be adopted. A new 
IOSIH can be provided for the printer driver process which, when 
spliced ln before the printer DIH, will insert labels. By use of 
the "nosklp" mode In the printer DIH, labels can stilt be placed 
in the top and bottom page margins as desired. Obviously, this 
second approach ls less eff lclent than the f lrst and therefore 
"ill only be used temporarily If at all. 

The requirement for accountabllitv forms ls prlmarlly to provide 
a means of recording and controlling the· dlstributlon of 
classlfled output. It also serves a direct security function in 
the separation of output. The distribution staff can check to be 
sure that there ls one piece of output (e.g., ti st Ing, card deck) 
for each accountability form. This check wllt prevent a 
mallclous user from imbedalng headers and trallers "lthin his 
data which would fool the distribution staff Into believing a 
phoney access class banner. A separate terminal from the current 
daemon console must be used to prepare the accountab!llty forms 
and lt should be located near the associated device. 

A byproduct of the accountability form terminal ls Its ability to 
also function as a driver control terminal. The usefulness of a 
driver control terminal stems from physical hardware arrangement. 
Some sites locate one or more line printers (or other I/O 
devices> Ln physically separated areas from the central computer. 
However, the daemon driver console must remain in the central 
computer room to prevent privileged access from fal llng ln the 
hands of untrusted personnel. On the other hand, the local 
device operator Js ln the best position to determine which 
reauests should be restartea, etc. Another terminal physically 
located beside the devlce could allow the device operator to 
enter benign operatlonal reQuests without compromising security 
and without requiring assistance from central operations. The 
use of thls control/accountability form terminal would, of 
course, be at the option of the slte. 

-&-



Multics Technical Bulletin HTB-1Z9 

To Implement this new feature we will add a new per device class 
parameter to the IO daemon parms file which indicates whether a 
control terminal is required for the driver. The default for an 
unspecified parameter wll I be "not reQuired. 11 When the terminal 
ls not reQulred, the drlver process wlll operate exactly as it 
does today. 

When a control terminal ls required, the driver will walt for a 
terminal to be dialed to the process before telling the I/O 
coordinator that lt is ready to process reQuests. However, the 
current implementation of the dial co•mand ls too restrictive to 
be useful in this context. It only allows one instance of a 
process_group_ld to request dialed devices. Under the current 
implementation, drivers and the IO coordinator are logged in as 
IO.SysOaemon. Hence, we must implement the changes to the dial 
command suggested by r.H.VanVleck in HTB 013. 

During normal operation of the driver, the control terminal will 
print one accountability form for each copy of ~eQuested output 
from the driver process. The form may contain information which 
describes& the reQuestor, header and destination options, 
seQuence number, banner access class, date·tlme, installation, 
pathname ana access class of segment. (Notes The module which 
foraats the output to the control terminal will be site 
replaceable. The normal moaule will print the same information 
provldea by the I/O Daemon today which does not reQuire a form.> 

A "start" command must be issued from the control terminal before 
processing wilt begin to allow the device operator to align the 
accountab1f 1ty forms being used. A command to print a sample 
form will be provided for this purpose. Slnce the output to the 
control terminal may be formatted to preprinted forms, commands 
mav not be entered without destroying the alignment. Therefore, 
commands will be honored only after the device operator presses 
"quit" on the control terminal. This allows for realignment 
before resuming operation <we will reset the write buffers). 

The control terminal will never be al lowed to enter arbitrary 
commands for security reasons. Also, we must restrict the set of 
commanas, normally acceptable to the arlver, which may be entered 
from this terminal. Specifically, the commands return, debug, 
detach, attach, and reattach will not be honored from the control 
terminal. The other commands will not create security problems 
<1.e., start, cancel, kill, restart, save, reinit, logout, sample 
(new>>. 

We don•t want to remove the slte operator•s abllity to control 
the driver. Therefore, when the driver expects input, It wlll 
f lrst look for commands from the master driver console ana then 
from the control terminal. (Control terminal Qults will be 

-7-



MTB-129 Hultics Technical Bulletin 

disabled while the master terminal has control of the process>. 
The master console wlll also be able to indicate that further 
input and Quits from the control terminal be accepted or 
reJected. 

If the control terminal gets disconnected, the master console 
will be notified and the driver will wait for Instructions. The 
operator may reauest that the driver continue without the control 
terminal or that the driver wait for another dialed terminal 
(relnlt). 

A remote driver which communicates to a device over high speed 
phone lines will also be able to utilize a control terminal. 
This, of course, woulo reaulre a second phone line. Driver 
commands may be input from the control terminal as described 
above. Commands which may be entered from the remote device 
itself Ce.g., from cara reader> must be subJect to the same 
restrictions as commands from the control terainal for security 
reasons. 

The precealng sections aescrlbed changes to the I/O Daemon to 
support certain new features. This section, however, primarily 
describes changes necessary to cope •Ith the Impact of the Access 
Isolation Mechanism on t.he l/O Daemon environment. Also, an 
existing security problem ls discussed. 

The IIO Cooralnator, by its very nature, cannot operate strictly 
within the ruJes of the Access Isolation "echanism. Since lt 
handles Information of all access classes, it wlll run with a 
system-high access authorization. In order to send wakeups to 
driver processes, it will have the ipc privilege flag enabled. 
In order to create ana moalfy segments of varying access classes, 
it will make use of privileged access to segments and 
directories. In order to read and delete messages of all access 
classes, the coordinator will have orlvlteged access to message 
segments. 

Several segments exist ln lo_aaemon_dlr which hold messages ana 
message descriptors read by the coordinator from the message 
segment Queues. Since these messages will range in access class 
up to system high, they must be protectea in a system high 
segment after extraction from the message seg•ents. Therefore, a 
subdirectory of lo_daemon_dlr wlll be created having a 
system-high access class. In this olrectory the coordinator will 
create the reauest_seg (used to hold messages>, the rea_desc_seg 
Cused to hold message descriptors), and the new waiting list 
segment. 

-8-



Multics Technical Bulletin HTB-129 

Unlike the coordinator, driver processes are, for the most part, 
well-sulted to ablding by the restrictlons of the Access 
Isolation Mechanism. Therefore, a number of minor changes will 
be made to the I/O Daemon to avold the unnecessary use of special 
access privileges. 

The current sche~e for initializing arlver processes wllt reQulre 
slight modifications. Each driver process atte•pts to verifv 
that a coorainator process aoes, in fact, exist by locklng a 
coorainator lock kept in a special segment. If the lock is found 
to be validly locked, then a coordlnator exists. However, lf a 
driver succeeds in locking the lock~ then no coordinator exists. 
Unfortunately, locking the lock means writing ln the segment. 
Since drivers will have differing authorizations, thev cannot al I 
write ln the same segment. Therefore, the drivers will insteaa 
copy the lock to a private data area and then attempt to lock the 
copy. Thls works even better than the present scheme since lt 
eliminates the need for a secondary tock now used to prevent 
Interference among drivers. 

The lnitializatlon of driver-coordinator communication will also 
require some smalt changes. All drivers create a temporary 
0 communicatlon" segMent containing Information for the 
coordinator ln lo_aaemon_alr. Oue to differing drlver 
authorizations, thls will no longer be possible. Therefore, 
these temporary segments will instead be created In each drlver•s 
process dlrectory. Upon receiving a unew driver• wakeup from a 
drlver, the coordinator examines the com•unlcation segment, 
valldates the driver. and then creates a •driver status• segment 
used for future communication. The driver status segment, now 
created ln io_daemon_dir, must be writable by the ariver process 
and therefore must have an access class eQual to the drlver•s 
authorization. Since driver status segments of differing access 
classes cannot coexist in a single directory, the coordlnator 
wllt create a separate upgraded subdirectory ln lo_daemon_dlr to 
hcla each driver status segment. 

As mentioned above, messages and message descriptors wltl be 
stored ln segments of system high access class and hence will not 
be accessible to al I drlvers. Hessage descriptors are already 
copied to the driver status segment bv the coordinator ~ach time 
a driver ls given a request. Currently, the driver reads the 
message itself directly from the reQuest_seg. Since this wlll no 
longer be possible, the message wlll also be copied to the driver 
status segment by the coordinator at the same tlme as the message 
descriptor. 

To this point, every effort has been made to ensure that ariver 
processes would not reQulre the use of any special access 
privileges. Unfortunately, there are two cases ln which the use 
of such privileges seems unavoidable. Following each aprint, a 
driver process executes a program called ucharge_user_u which 



11TB- 129 "ultlcs Technical Bulletin 

upaates accounting information ln the pdt entry of the reQuestlng 
user. Since Pdt segments have system-low access classes, yet 
driver authorizations may range up to system high, it wilt be 
necessary for the drivers to obtain privileged access to pdt•s. 
The other circumstance ln which special access ls reQulred ls 
within the message routing DIM. All daemons attached via the 
•essage routing DIH must write in a common segment. Therefore, 
mrdlm_ will be modified to detect the need for special access and 
to attempt to obtain special access. 

A secur 1 ty 
process ID 
acce ssib I e 
process to 
Queues and 
•restart ... 
the ACL of 
IO to aeny 

problem exists due to the fact that the coordinator 
and event channel IO are stored in a segment 

to all processes. This makes It possible for any 
impersonate a driver, i.e., to drain reQuests from the 
to Issue various commands to the coordinator such as 

This proble• ls easily corrected simply by setting 
the segment containing the coordinator event channel 
access to alt but Io.•.• • 

A. For Access Ranges 

Change lodc_Sinlt to create the 
list segment and to store a 
loac_statlc. 

Queue group table/waiting 
pointer to this segment In 

2. Change lodc_parse_parms_ to recognize the new "access_range" 
and "Queue_group" keywords. lnltlalize the Queue group table 
and thread together ~evice class table entries of the same 
Queue group. Place in each device class table entry the 
offset of the associated Queue group table entry. 

3. Change loac_Snew_driver to check lf a new driver ls the first 
of Its device class and if this device class ls ln turn the 
first of its Queue group. If so, open the message segments 
in the Queue group. 

'+• Change f lna_next_reQuest_ to use the Queue group table and to 
manage the waiting lists as described. 

5. Change save_reQuest_ to use the Queue group table to 
determine from which message segment a given message should 
be deleted. 

B. For Bannersl 

1· Change head_sheet_ to print the access class banner. 



... 
.. ' 

~ 

Multics Technical Bulletin HTB-129 

c. For Page Labels& 

1. Change the dprlnt commana to recognize the new -access_label, 
-label~ and -no_label options. 

2. Change loac_parse_parms_ 
parameter which causes 
aetault. 

to recognize the new "label" 
labels to be added to printouts by 

3. Change output_reQuest_ to check for the label option and to 
make the appropriate order call lf lt ls reQuested. 

4. Change prlnter_olm_ to recognize a new "label" order call and 
to pass this on to the printer OCH. 

5. Change prlnter_acm_ to recognize the label order call and to 
insert labels ln the top and bottom page margins. 

&. -If changes 4 and 5 cannot be made soon enough to meet the 
delivery aeaaline, then lmptement a new IOSIM to add labels 
as described. 

o. 

1· 

2. 

3. 

Lt. 

5. 

For Accountabllltv Form/Device Control Te~mlnal• 

Change lodc_parse_parms_ to recognize the "control_terminal" 
keyword. 

Change lodd_statlc to hold control terminal attachment data. 

Change remote_Slnlt and lo_aaemon_arlver_ to attach control 
ter•lnal lf reQulred. 

Change iodd_Qult_handler to conditionally recognize Input 
from control terminal and Implement sample command. 

Change input_cmd_ and remote_ to separate commands from 
master and control terminal. 

6. Change output_reQuest to call accountability form prlntlng 
module if a control terminal ls attached. 

7. Change the answering servlce dial facllltv per HTB ~13. 

E. For Access Control Consideratlonsl 

Change 1odc_1nit to 
prlvlteges for the 
alrectory in "hlch to 
the Queue group table 

enable the necessary special access 
coordinator. Create a system hlgh 

place reQuest_seg, reQ_desc_seg, and 
segment. 

-11-



HTB-129 Multics Technical Bulletin 

2. Change lod_overseer_ to copv the coordinator lock before 
testing it for a driver process. 

3. Change dr.iver_inlt_Sslgnat to create the drlver_co11a seg11ent 
ln the process dlrectorv and to store the process 
authorlzatlon in the drlver_comm structure. 

't. Change lodc_Snew_drlver to create an upgraded directory and 
hold each driver status segment~ 

5. Change .iodc_S,drlver_slgnal to co,pv each dprint message to the 
driver status segment. 

6. Change charge_user_ and 11rdl11_ to use prlv.lleged seg111ent 
access as described. 

-12-


