
MULTICS TECHNICAL BULIBl'IN MTB-120

TO: Distribution

FROM: J. W. Gintell

DATE: September 30, 1974

SUBJECT: New :probe command

Attached is the documentation on the new :probe command. Any
comments may be submitted to Jeff Broughton or John Gintell.

Multics Project internal working documentation. Not to be reproduced
or distributed outside the Multics Project.

MULTICS PROGRAMMERS~ MANUAL

&me• probe, pb

probe
• ·----

Command
07/16/74

The probe command is a symbolic debugaino aid that allows
the user to interactively examine the state of his pro~ram.
Commands are provided to displAy and alter the value of
variables, to interrupt a runninq program at a ~artic11lar
statement by use of breakpoints, to list the source proqram, to
examine the stack of block invocations, and to invoke external
subroutines and function~.

In order to debug a program with probe, the proqram must
have a standard symbol table that contains information about
variables defined in the prooram and a statement map qivina the
correspondence between source statements and object code. A
symbol table and statement map is produced by the PL/I and
Fortran compilers if the 11 -tableJ• option is specified. CA
program may also be compiled with the "-brief_table" option
which will produce only the statement mAp and disable the
ability to reference variables.>

To store certain information about orograms being debun~ed,
probe uses a segment in the user1 s home directory CAlled
Username.probe where Username is the user's oersonid. This
seqment is created automatically when needed.

The primary use of probe is
execution has been suspended. This
ways.

to examine a proaram whose
can occur in one of several

First, execution may be interrupted as a result of an error
occurring in the program such as zerodivide or overflow. After
an error message is printed on the user's console, and ~ new
command level entered, probe may be called and commands issued
to it to identify the cause of the error.

Second, the user can, as always, stop a run-away proaram by
11quittinq 11 •

Third, the user may designate, by use of probe's break
commands, statements on which the program is to stop and directly
enter probe. A list of commands associated with the break
would then be executed automaticA 11y. These comm;:mds cotJ ld print
a variable, tell what line was just executed, or cause probe to
read additional commands from the console. In this way, the user

,,,,... can follow the progress of his proaram before an error occurs.

(G) 1974, Honeywell Information Systems Inc.

probe MULTICS PROGRAMMERS' MANUAL

Paoe 2

In all of the cases above, an active program has been
suspended. This means that variables of all storaqe classes, in
particular automatic, exist and may be displayed. Probe mAy
also be used to examine a non-active program one that has
never been run or that has completed. Used in this manner, probe
can be used to look at static variables, and the program source,
though the most common use ·is to set breaks before actually
running the program.

Probe maintains three "pointers" that can affect the
execution of many commands. They are• the sour~~ pointer which
marks a particular source program statement as the "current
statement" and the progr·am as the ·11current program"; the symbol

.l'lQ.JJltJU: which indicates the ncurrent block" and generation of
storage Ci.e. stack frame> in which to evaluate svmbolic
references to variables; and the contrQl. pointer· which
des.ignates the statement at which control was suspended in the
procedure of interest.

,Usages

probe -<procedure>-

where <procedure> is an optional argument giving the name of an
entry which the user is interested in. If the procedure is
active, the control and source pointers will be set to the lnst
statement executed, and the symbol pointer wi 11 be set to the
most recent invocation of the procedure. If it is not active,
then the control and source pointers will be set to point to the
entrv statement, ~nd the symbol pointer will desianate the
outermost block of the procedure.

If a <procedure> is not specified, probe will check if an
error or quit has occurred and, by default, use the procedure
that was executing. The pointers will be set as if the user had
specified it explicitly. If no error has occurred, then probe
will print a message and return.

When probe is entered as the result of executing a procedure
with a breakpoint set in it, the control and source pointers ~re
set to the statement on which the break was set, and the symbol
pointer to the block that contains that statement.

In general, after an error, quit, or break, things will be
set up by default much as one would expect. The user should,
however, explicitly name a <procedure> when he is interested in
working with a non-active one.

MULTICS PROGRAMMERS' MANUAL probe

PAne 3

Once probe has been entered, the user may issue co~mands to
it in order to examine his proqram.

CommawLS::it:nt.ax•

The command languaqe recognizes three constructs: simple
commands, command lists, and conditional commands. Loosely, a
simple command is a basic probe request, and a commAnd list is a
list of co~mands separated by semi-colons Cor newlines). A
conditional command is a simple command or list (surrounded bv
parentheses> prefixed by a conditional predicate controlling when
the request is to be performed. Examples follow in the next
section.

In the discussion of commands that follows,
symbols will be used for certain constructs Ce.g.
Their meaning should be apparent from context and
given. A complete discussion will be found
writeup.

meta-language
<expression>).
from examples
later in this

P'.\Ob~ I
MULTICS PROGRAMMERS' MANUAL

----·
Page 4

flasic CQmmands

print, ~

print {<expression>:<cross section>}

Output on the console the ·value of <expression>. The print
request allows the user to display the value of variables,
builtin functions such as addr and octal, and the value returned
by an external function.

print var
print p -> a.bCJ>.c
print addr Ci>
print octal Cptr>
print function C2>

Array cross-sections may be displayed by specifying the upper and
lower bound of .the cross-section as follows•

print array Ct15, 1 >

which would print array<t,1>, arrayC2,l>, ••• , arrayC5,t). More
than one dimension ~ay be iterated; for instance aC1•2,1•2> would
print, in order, aCt,t>, aCt,2>, aC2,1>., aC2,2>.

let {<variable>:<cross section>} = <expression>

Set the <variable> specified to the value of the <expression>.
If the types are not the same, conversion will be performed
accordinq to the rules of PL/I. Arrey cross-sections may be
used with the same syntax as in print. Note that one may not
assign .one array cross-section to another.

let var = 2
let arrav (2,3> = i + 1
let p ->·a.bC1•2>.c = tOb
let ptr = null

Warning• because of compiler optimization, the change may not
have immediate effect in the program.

MULTICS PROGRAMMERS' MANUAL

cont1ou~, '-

continue

Cause probe to return to its caller. If entered
level, probe will return to command level. After a
user's orogram will, in effect, be restarted.
debugging session, the quit button must be used.

I
I

probe :
I ----·

Paae 5

from command
break, the
To abort a

call <procedure>CC<expression>C,<expression>l ••• l>

Call the subroutine with the arguments given. If the procedure
has descriptors giving the type of the arguments expected, the
ones given will be converted to the expected type; otherwise,
they will . be passed as they are. The print request may be used
to invoke a function, with the same sort of aroument conversion
taking place. Note• if the procedure has no arquments, a null
arqument list, 11 () ", must be oi ven.

call sub C"abc", p -> p2 -> bv, 250, addrCJ>>
call sub_noarqs ()
print function C11 01011 b)

gQ.tQ' gg, .t.o' gQ,' .0

goto <label>

Cause an exit from probe and a non-local qoto to the statement
specified.

qoto label_ var - transfer to value of label
variable

qoto action (3) - transfer to label constant
qoto 29 - transfer to statement on line 29

of current proryrAm
goto $I l 0 - transfer to line lAbeled 110 in

the fortran program

Warninoz because of compiler optimization, unpredictable resu 1 ts
may occur.

I
I

: probe
I '----
Paqe 6

ll..s.t, ls.

list Ca.l

MULTICS PROGRAMMERS' MANUAL

Soyrcji (Ammanda

Direct one or n statements beqinning with the current statement
Ci.a •. the source pointer> to be printed. Notes only executable
stAtements for which code hRs been generated can be listed;
however, if several statements are requested, interveninQ text
such as comments and non-executable statements will be included
in the output.

position <label>
position <+:->a

Set the source pointer to the statement indicated or to plus or
minus a. executable statements relative to the current state~ent.

!)Osition ll'lbel
position action (3)
po s i ti on 2-1 4

position +2

position -5

f.ioQ., t

find 11 <string> 11

- set the source ptr to label• •••
- to action (3 > 1 •••

- to statement on line 14 of file 2
of the program

- move forward 2 statements in the
source

- move back 5 statements

Search for an executable statement containina the characters in
<strin9> and if found, set the source pointer to that stAtement.
The search beoins after the current statement and continues
around the proq~am as in the editors edm and qedx. Notes because
of reordering of statements by the compiler, which, amonq other
thinqs, moves suborograms to the end, the search may not
nece~sarily find thinrys in the same order as one would expect
from "" source listina of the proar~m.

find "write C6,10)"

f ind 11 s tr = 1111a11

f i nd II Q + 2 II ; 11 5 t

- locate the statement in the
pro<iram
locate str = 11 a

- locate and print the statement

MULTICS PROGRAMMERS' MANUAL probe

Paqe 7

Symbol C.ommarui~

ilill, sk

stack CC1,la.l [all]

Trace the stRck backward from the 1th frame for a. frames. If no
limits are qiven, the entire stack will be traced. The trace
consists of a list of active procedures and block invocations
Ci nc lud ing 11ui ck blocks) beginning wi t,h the most recent. In
addition to the name of the block, a frRme or level number is
qiven, as is the name of any conditions rAised in the frame.

stack
stack 3
stack 3, 2

- trace the whole stack
- trace the first thr~e frames
- trace th 3rd and 4th frames

Normally, system or subsystem support procedures will not be
included in the stack trace. If desired, they may be included by
speci tying "a 11 11 •

stack all
stack 3,5 all

use [<block>]

Selects a new block or procedure to be examined. If no <block>
is qiven, then the block originally used when probe was .entered
will be assumed •. The symbol pointer is set to the <block>
specified so that variables in that block can be referenced. In
addition, the source oo inter is set to the last statement
executed in the block; in this way, the point at which the block
exited may be found with the help of the list co~mand.
Acceptable <block>s includes

<procedure>
<label>
level 1
- D.

Here <procedure> is the name of a procedure whose frame is
desired; its usaqe is essentially the same as if used on the
command line. A <label> denotes the block containing the
statement identified by the label or line number -- for inst~nce,
the l~bel on a be01n statement denotes that begin block. If the
<label>s block is not active, the source pointer will be set to
the statement specified. "level 1 11 w111 use the 1th block frame

I
I

: probe
I
I

Page 8

MULTICS PROGRAHMERS' MANUAL

from a stack trace. 11 -011 will use the nth previous
the current block allowing one to move back
recursion level. <If more frames are requested
exist, the last one found will be used.)

instance of
to a previous

than actua 11 y

use sub
use label
use level 2
use -1

use -999

symbol <identifier>

- use block procedure sub occupies
- use block containino labels •••
- use second frame in stack trace
- use previous instAnce of current

block
- use first Coldest> instance

Display the~attributes of the variable specified and the name of
the block in which its declaration is found. If the variable hRs
variable size or dimensions, an attempt will be made to evaluate
the size or extent expression; if the value is not available,
then "*" wi 11 be used instead. ~

where Csourcelsymbol:controll

Display the current value of one or all of the pointers. Source
and control will give the statement number of the correspondina
statement. Symbol will give the name of the block currently
beino used; if the block is active, its level number will also
aopear.

where - give value of all three pointers
where source - give the value of the source

pointer

MULTICS PROGRAMMERS' MANUAL probe
I I , ___ ,

Paqe 9

i.ns.§J:.t ' i

insert C<label>ls {<command>:C<command list>)}

Set a breakpoint before the statement specified by <label> and
cause the command(s) qiven to be associated with the break. If
no <label> is given, the current statement wi 11 be assumed.· When
the running program arrives at the statement, probe will be
entered before the statement is executed, and the commands will
be processed automatically. When finished with the commands,
probe will return, and the program will resume at the statement
at which the break was set. In effect, the user may "insert"
probe commands into his program.

inserts (print var; print var2>
- set a break before the current

statement
insert quicks print x - set a break before the statement

labeled quick

,. Note that the command list may extend across line boundaries if
necessary.

appen'1, .a

~ppend C<label>]s {<command>:C<command list>)}

is the same as insert except that the break is set after the
statement designated. This means that the command list will be
interpreted after the statement has been executed. If the
statement branches to another location in the program, probe will
o.c..t be entered. The difference between appending at one
statement and inserting at the next is that a transfer to the
next statement would cause a break for the insert case but would
not for the append one.

s.tJ:ul' !iQ.

stop

Causes probe to stop processing its current input and read
commands from the console. A new invocation of probe is created
with new pointers set to the values at the time "stop" was
executed. It is of primary use as part of a break command list
as it enables the the user to enter commands while a program is
suspended by a break. In effect, he may halt a running program.
A subsequent continue command would cause probe to resume what it

probe MULTICS PROGRAMMERS' MANUAL
; ~ -t,

Page 10

was doing before stopping ·- for instance, finish a break command
list and return to the program. The command•

insert 29• stop

would cause the program to halt at statement 29 and allow the
user to enter probe.commands. Continue would restart the program.
Similarly•

append• <print a• stop1 print b)

would cause the value of a to be printed before
halted• later, after ~he user entered a ~continue"
value of b would be printed, and the execution of
resumed.

the program
command, the
the program

reset
reset {atlaftertbefore) <label>
reset <procedure>
reset *

De.lete breaks set by the insert or append commands. Just "reset"
deletes the last break that occurred• the <label> form deletes
breaks set before and/or after a statement• <procedure> and "*"
may be used to reset all the breaks in a segment, and all breaks
in all segments, respectively.

reset - delete the current break
reset at 34 - delete breaks

appended at 34
reset after 34 - delete the break

34
reset sub - delete a.11 breaks
reset * - del ate all breaks

status
status {at:afterlbefore) <label>
status <procedure>
status *

inserted

appended

in sub
known

and

after

Give information about what breaks have been set. The scope of
the requests is similar to "reset"'

status - list the current break
status before label - list the break inserted at labels

MULTICS PROGRAMMERS~ MANUAL

status sub

status *

gause, Qa

pause

: :
: probe : .
..... ..:.>.;.n.•"-• ·----

Page· 11

- tell what breaks have been set 1n
sub
tell what procedures have breaks
set in them

Equivalent to nstopf reset" in a break command list, it causes
the procedure to execute a break only once stopping, then
reseting the break •

.a.tAl2t .s

step

Set break consisting ot "pause" after the statement following the
control pointer and "continue". It enables the user to step
through his program one statement at a time. Notes that if a
statement transfers elsewhere, the break will not happen until
sometime later, if ever.

brief, b

brief Con:offJ

Turn brief message mode on or o.ff. In brief mode, most messages
generated by probe will be much shorter and others will be
surpressed altogether. The default is off •

~l.11"..e' ~' ll

execute "<string>"

Pass <string> to the command processor to be executed as a normal
Multics command.

I
I

: probe
• '.. ·" • _,_.··p ·----
Page 12

MULTICS PROGRAMMERS' MANUAL

CwlQ1t1onal er.edica.t..as,

u
if <conditional>• {<simple command> I (<command list»}

The command<s> will be executed if the
true. The <conditional> may
<expression><op><expression> with <=,
<op>s.

if a < bt let p = addr <a>

<conditional> evaluates to
be of the form

<, =, A=, >, >= allowed as

This predicate is of most use in a break command list as it can
be used to cause a conditional stop•

insert• if z A= ''1011 bt stop

would cause the proqram to stop only when z A= .ftJ0 11 b.

wbil e, li

while <conditional>• {<simple command>:<<command list>)}

Allows iteration by executina the command<s> as lonq as the
<conditional> is true.

while p A= null• <print p -> r.val' let p = p -> r.next>

MULTICS PROGRAMMERS' MANUAL

Expressions•

I
I

probe :
. ~-t ' ----·

Paqe 13

Allowable <expression>s include simple scalar variables,
constants, and probe builtin functions. The sum~and difference
of computational values can also be used.

Variables may be simple identifiers, subscripted
"structure qualified references, and locator qualified

Subscripts are also expressions. Locators must be
pointer variables or constants.

running_ total
salaries Cp -> i - 2)
a.bC2>.c<3> or a.b.cC2,3> etc.
x.y -> var

references,
references.
off sets or

Arithmetic, string, bit, and pointer constants are
supported. Arithmetic constants may be either decimal or binary,
fixed or float, real or complex. Also, octal numbers are
permitted as abbreviations for binary integers Ce.a. 120 = 10>.

-123
10b

45.37
4.73e10

2 .1-0.3i
123456700

Character and bit strings without repetition factors are allowed.
Character strings may include newline characters. Octal strings
may be used in the place of bit strings Ce.q. 11 12311 0 =
·11.001010011 11 b) •

11 abc 11

11 quote 1111 instring 11

11 101011 b
11 01234567 11 0

Pointer constants are of the form• seo#:word#Cbit#). The seo#
and word# must be in octal. The bit# ls-optional and must be in
decimal. They may be used as locators.

214:5764 232:7413(9)

Three builtin functions are provided by probe• addr, null,
and octal. The addr function takes one argument and returns a
pointer to that argument. Null, taking no arguments, returns a
null pointer. They are the same as in PL/I. The function octal
acts very much like PL/l's unspec builtin in that it treats its
argument as a bit string of the same lenqth as the raw data
value, and may be used in a similar manner as a psuedo-variable.
However, when used in the print command the value is displayed in
octal. C Data 1 terns not occupying a mu 1 ti pl e of three bi ts wi 11
be p~dded on the L1.ob1·>

---I I
I I

: probe : MULTICS PROGRAMMERS' MANUAL
. I ____ ,

Page 14

A <label> identifies a source program statement and may be a
label· variable or constant, a line number as it appears on a
source listing Ci.e. Cf..1.1.a-llio.a>, or a special statement

·designator• $c representing the "current staternent 11 , Sb
representing the statement on Which the last break occurred, and
Sillllllb.aI:. for fortran labels. An optional offset of the form 11 ,.s. 11

·is also allowed.

label
label_var

17
3-14,2
$b

Sc, 1
$100

groce~e Ref,arences&

- statement at label• •••
- statement that label_var is set

to
statement

- statement
- statement

occurred

on line 17 of program
2 on line 14 of file 3
at which last break

- statement after current statement
fortra.n statement labeled 100

A <procedure> is considered to be a reference to an entry
variable or constant. External names may be used.

I;val11a.t.1.Qn_g! Variabla Reterencess

When a variable is referenced in a command, probe will
attempt to ~valuate it by first checking for an applicable
declaration in the current block as indicated by the symbol
pointer, and if necessary in its parents. If not found, the list
of builtin functions will be searched. Finally, when the context
allows a <procedure>, a search will be made following the user's
search rules.

The block in which to look for a variable may be altered by
the use command which sets the symbol pointer. For example, if
"print var" displays the value of var in the current block, then
"use -11 print var" displays the value of var at the previous
level of recursion. A shorthand is available for referencino
variables in other blocks -- an optional block specifications

<variable> i<block>l

where block is the same as in the use command. The use of
<block>s in this manner does not alter the symbol pointer.

MULTICS PROGRAMMERS' MANUAL

varC-1 J
abcCother_blockl
xyz[391
n.mClevel 41
qC2)[subl

I
I

: probe :
I . ~ I ·--·

- looks for previous value of var
- looks in 11 other_block" tor abc
- looks in block containing line 39
- looks in block at level 4
- looks in procedure sub

A block specification may be used on an identifier anywhere the
variable could be used. However, a block specification on A
label or entry constant is ignored unless 1 > the relative C-o>
format is used, and 2> the label or entry is itself used in A
block specifcation~ In such a case, it is taken to mean the nth
previous instance of the block designated by the label or entry;
that is, 11 var[subC-2Jl 11 references var in the second previous
invocation <third on the stack> of sub.

• • I I

: ·probe : MULTICS PROGRAMMERS' MANUAL
I I ·--·
Page 16

,S.amQle Qebuggino Ses:a.1'211=

The followinq is a sample attempt at debuoging a progran.
It is not claimed that the program does anythina useful, or that
this is the best way to debug the program. The-purpose is merely
to give an example of how certain probe commands can be applied.
A listing of the source of the program, test, is oi ven on the
next paqe; the sample outout follows with ">" used to denote
lines typed by the user.

In order to use probe to debug a program, the proqram must
be compiled with the 11 -table" option. Generally, the user should
qenerate a symbol table for any proqram that he does not have
good reason to believe will work.

Do line 5, the user calls his proqramJ noticing that it
seems to be loopinq, he stops it by hitting the quit button.
After the user invokes probe, it responds by telling that the
internal function "fun" was executing line 38 when interrupted.
Since the source pointer was automatically set to that line, a
request to print the current statement with "listn, displays the
source. The statement causinq an error could be displayed in a
similar manner.

The stack command was then used to see what called what.
The ouput shows that procedure "test" was called from command
level, and then, in turn, called fun. While fun was executing, a
quit occured and established a new command level. To determine
whether fun was called from line 17 or line 27 of test, the use
command is used to find the point at which test exited. Since
11 use 11 also sets the symbol pointer at the same time, the user C"'ln
check if 11 s.num 11 has the correct value with the print command.

The user decides that it would be worthwhile to trace the.
value of i. Rather than recompilino his prooram with a put
statement added in a strAteqic location,-probe all6ws him to set
a break containina a print co~mand to accomplish the same thing.
Wanting to set the break after the do statement on line 16, the
user searches for it with the find command. "list" is used to
verify that the correct line was found. The continue co~mand
then causes probe to return (to command level>.

To abort the suspended
release command to Multics. If
quittinq, he could not ~ave
what happened.

prooram test, the user gives the
he had done this just after

used probe to find out much about

MULTICS PROGRAMMERS' MANUAL

1 test• procedure;
2
3 declare
4
5 Ci, J> fixed binary,
6 1 s structure based Cp>,
7 2 num fixed binary,
8 2 b Cn refer Cs.num)) float binary,
9 p pointer, n fixed binary,

l O sysprint file;
I 1
1 2
13 n = 5;
14 allocate s set Cp>;
1 5
16 do i = I to s.num;
I 7 s • b Ci > = fun C i , l > ;
18 end;
19 put skip list Cs.b>;
20
21 do j = s.num to l by -1;
22 s.bCJ> =fun C-J, -1>;
23 end;
24 put skip listCs.b);
25
26 return'
27
28

• I

probe :
' . ---·

Page 1 7

29 fun: procedure Cb, i> returns (float binary>;
30
31 declare
32 Cb, i) fixed binary;
33
34 if b = 0
35 then return Cl>;
36 else do;
37 b = b - i;
38 return C2**b +fun Cb, 1>>1
39 end;
40
41 end fun;
42
43
44 end test;

-----• • I I

: probe : MULTICS PROGRAMMERS' MANUAL ·--·
Page 18

The program is started once again, but now, after each time
line 16 is executed, the break occurs and probe prints the value
of i. Clearly, it is not being incremented as it should. Since
this approach is not producing any useful information, the user
aborts the program and trys to delete the break. The status
command is used to tell what breaks have been set in the segment
test, and then to see the break set. The break is then deleted
with the reset command. Note that if there had also been a
"Break before 1611 , then the command ''reset at 1611 would have
deleted both.

The user next decides to see what is qoinq on in fun, so he
sets a~break to halt it every time it is invoked. By looking at
the listing, he knows that the first statement in fun is on line
34, so he "positions" the source pointer to that statement Rnd
11 inserts 11 a 11 stop 11 • To accomplish the same thing, "insert 341
stop" could have been used.

The program halts when the break before line 34 is reached.
The user displays b and i getting the values he expected. The
where command is also used to see what the state of thinqs is.
Continue C 11 c~> restarts fun which calls itself recursiv~ly and
stops again. The stack command (showing the last five frames)
verities that fact. The user prints the b in the current
instance of fun (at level 2> and in the previous one Cat level
3). Mistakenly expectino the b's at different levels to be
different, he gets suspicious. The variable 11 i 11 has the value
expected, but· the symbol command shows that it is wronq one -
the parameter to fun, not the loop index. To qet the correct
one, he must look in the frame belonging to the procedure test.
This "i" has been set to zero. The user then realizes his error.
The function is modifying its argument C the loop index "i 11 > on
line 37. Done with debuaqing the program, 11 reset 11 is used to
delete the currently active break Cthe one that Just occurred),
and the program is aborted.

..
. '

,... MULTICS PROGRAMMERS~ MANUAL

1
2
3
4
5
6
7
8
9

> pll test -table
PL/I
r 1248 3.211 28.336 280

> test
Cquit)

QUIT
r 1250 5.371 6.702 52 level 2, 10

> probe
Condition quit raised at line 38 of fun.

> list

probe
I : ' I ·--·

Page 19

10
1 1
12
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
2.7

return C2**b +fun Cb, i>>;
> stack

1 command_processor_
2 release_stack
3 unclaimed_siqnal
4 real_sdh_
5 return_to_ring_O_
6 fun
7 test
8 command_processor_
9 listen_

10 process_overseer_
11 real_init_admin_

> use level 7
> list

23 s.bCi> =fun Ci, 1>;
29 > print s.num
30 5
31 > find "i = 111 ; list
32 do i = 1 to s.num1
33 > append• print 1
34 > continue
35 r 1252 1.375 16.394 354 level 2, 10
36
37 > release
38 r 1252 .126 .922 19
39
40 > test
41 1
42 1
43 1
44 1
45 Cquit)
46 QUIT

~ 47 r 1252 3.069 .650 25 level 2, 12
48

quit

probe :
I I ·---·
Paae 20

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
AS
89
90
91
92
93
94
95
96

> release
r 1253 .092 .937 20

> probe test
> status test

Break after line 16.
> status after 16

MULTICS PROGRAMMERS' MANUAL

Break after line 161 print i
> reset at 16

Break reset after line 16 of test.
> position 34
> list

if b = 0

> insert: stop
> continue

then return Cl);

r 1255 .781 12.356 333

> test
Stopped before line 34 of fun.

> print b
1

> where
Current line is line 34 of test.
Usinq level 2: fun.
Control at line 34 of fun.

> print i
1

> c
Stopped before line 34 of fun.

> StACk 5
I
2
3
4
5

> print b
0

break
fun
fun
test
command_processor_

> print bC-1 l
0

> print i
I

> symbol i
Attributes ares fixed binaryCJ7,0> aligned parameter.
Declared in• fun.

> use test
> print i

0

I I
I I

MULTICS PROGRAMMERS' MANUAL : probe :
I I , ___ ,

Paqe 21

97 > reset
98 Break reset before line 34 of test.
99 <quit)

1 no QUIT
101 r 1307 ~.870 64.788 1544 level 2, 18
102
103 > release
104 r 1307 .076 .992 31

