
Multics Technical Bulletin MTB-112

TO: MTB Distr1bution

FROM: Txom McGary

SUBJECT: Consolidated Search Facility

DATE: August 1, 1974

This document reviews existing search mechanisms used by
Standard Service System commands, and proposes a single
extensible facility to replace them. There are currently several
commands which use search rules of one kind or another, but their
treatment of search rules is inconsistent. Include (translator)
search rules are maintained by one subroutine, but info file
search rules are maintained in two commands (help and
check_info_segs). A consolidated facility would be easier to
learn, easier to use and could provide functions not currently
availible.

Please address comments or questions to Txom McGary, by
Multics mail to McGary.RDMS, by Interdepartmental Mail to 39-411,
or by telephone at 253-4107.

Multics Project internal working documentation. Not to be reproduced
or distributed outside the Multics Project.

Page 2 Consolidated Search Facility

!fl" Existing Search Rule I Search Procedure Mechanisms

1) Object Segment Search Rules:

a) invocation: calls to hcs_$make_ptr or 1 inkage fault.
b) manipulation: by commands set_search_rules,

print_search_rules, set_search_dirs, add_search_rules,
delete_search_rules; by subroutines
hcs_$initiate_search_rules, hcs_$get_search_rules, and
parse_search_rules_.

c) default rules: initiated_segments, referencing_dir,
working_dir, system_libraries.

d) data base: an array of pointers to directory segments is
maintained by the hardcore in the Known Segment Table
(KST). (Philippe Janson proposes that this be changed to
an array of search rules in the header of the CoMbined
Linkage Segment in MTB-035 "Design of a Dynamic Linker
Running Outside the Multics Security Kernal"; refer also
to RFC-49, "A Proposal for Removing Name Space Management
from Ring Zero", by Richard G. Bratt.)

e) keywords: initiated_segrnents, referencing_dir,
working_dir, home_dir, process_dir, system_libraries,
default (must be only search rule given) and
set_search_directory (following rules are to be appended
after woring_dir rule, used only by set_search_dirs).

f) maximum number of search rules: 21.

2) Include (Translator) Search Rules:

a) invocation: by call to find_include_file_$initiate_count
resulting from pll, alrn, or fortran statement "%include x",
runoff control 1 ine "·if y", or bcpl statement "get z".

b) manipulation: calls to find_tnclude_file_$get_search_rules
or find_include_file_$set_search_rules. (Steve Webber has
commands ptsr (for print translator search rules) and stsr
(set translator search rules) which perform the "get" and
"set" functions from command level.)

c) default: working_dir, >udd> user project >include (if it
exists) and >ldd>include.

d) data base: internal static structure of find_include_file_
for default search rules. If a user changes from the
default, a structure is allocated in the system free
storage area.

e) keywords: working_dir, referencing_dir, home_dir, default.
C"defaul t" re-establishes the default mentioned in c.)

f) maximum number of search rules: unrestricted.

3) Info File Search Rules:

a) invocation: commands help and check_info_segs. (Also, a
new command called list_help was recently added to the
AML.)

b) manipulation: none.

Consolidated Search Facility Page 3

c) default: >doc>iml_info_segs and >doc>info.
d) data base~: array of charC168) strings in help and cis.
e) keywords: does not apply.
f) maximum number of search rules: does not apply.

4) Peruse Text Search:

a) invocation: peruse_text command.
b) manipulation: none.
c) default: >doc)pt.
d) data base: character string in persue_text program.
e) keywords: does not apply.
f) maximum number of search rules: does not apply.

5) Macro Search Rules:

a) invoc~tion: use of macro-interpreters exec_com, qedx and
teco.

b) manipulation: none for system commands, ROMS version of
exec_corn has O\·m search ru 1 es, SI PB version uses object
search rules. The Author Maintained macro-interpreter and
editor teco has its own search rules: \'10rking_dir, home_dir
and TECO-dir C>system_library_auth_maint), and the user may
replace home_dir with an arbitrary directory pathname.

c) default: does not apply for system. CRDMS exec_com default
includes ROMS project's ec dir, >urld>ROMS>service.ec. SIPB
default is default for object segs. Teco default is
working_dir, home_dir, and TECO-dir.)

d) data_base: does not apply for system, ROMS exec_com has
internal static structure with room for up to 16 rules.
SIPB exec_com uses object segment search rules, so data
base is in the KST. Teco uses an internal static array of
three pathnames.

e) keywords: does not apply for system, ROMS subroutine
recognizes keywords for object segments, SIPB version uses
object search rules.

f) maxil1lurn number of search rules: does not apply for system
exec_col1l, ROMS exec_com allows up to 16 rules, SIPB
version allows up to 21 (using object search rules).

6) Other Search Fae i 1 it i es:

I am not aware of any other search mechanisms in the
Standard Service System, but elsewhere search procedures are
invoked.

get_library_segment is a system tool for getting a copy of a
segment stored in the Multics online 1 ibraries as a component
of an archive. This program allows a search procedure to be
associated with each directory, as specified in an ascii text
control file.
generate_mst is a tool for generating Multics System Tapes

,.
Page 4 Consolidated Search Facility

CMST's). Given an ascii text segment specifying segments to
be included on the system tape, the program searches the
working directory and >ldd>hard>object for the segments named.
Alternately, a set of search rules defined by an ascii text
segment containing directory pathnames may be used.
library_descriptor and 1 ibrary_map, tools Gary Dixon is
developing for management of the Multics libraries. A search
procedure is associated with each directory or subtree of
directories. The programs have been designed so they can be
used on library hierarchies besides the system's.
debug uses a search scheme to locate the source segment of an
object segment when the working segment is an object segment
and the source segment is referenced C"&a123,s5").

These search mechanisms do not fit well Into the proposed
facility, but omitting them seems reasonable since they are of a
sufficiently distinct character that they should be managed
separately. (For example, get_library_segment's search is tied
to the structure of the directories searched rather than simply
being a search for a segment name.)

Deficiencies in the Current Search Facilities

A) Subsystems cannot use the system "help" and "cis" commands
conveniently if they have their own info library. Many
subsystems naintain their own version of help and cis, probably
for this reason. (For RDMS at least, that -1£ the reason.)

B) The current facll ity for exec_com, qedx, etc. makes it
impossible for a project, subsystem or Individual user to
establish a macro library which can be used conveniently.

C) The current facilities are not extensible (with the exception
of translator search rules which could accomodate new
translators).

D) The current facilities perform the same function in an
inconsistent fashion. A consolidated treatment would be siMpler
to learn and more efficient to use, and would eliminate some
duplicated code. Additionally, some subsystem programs would no
longer be needed if their function were performed by the standard
system.

E) A consolidated facility could be documented in one place,
instead of including a description of search facilities in the
write up of each translator, macro-interpreter, or info coMmand.
(The write up for each would describe the default applicable and
refer to the documentation of the search facility.)

Consolidated Search Facility Page 5

Overview of Prooosed New Search Facility

I propose that the existing search mechanisms mentioned in
paragraphs 1 through 5 above be consolidated into a single search
facility subroutine (to be named "search_facility_"). All data
bases, defaults and keywords related to search rules would be
maintained by this procedure. The procedure would allow new
search groups to be established dynamically. Existing search
mechanisms would be supported by the new facility in a fashion
transparent to the user. (Object search rules would of course
still be maintained as an array of directory pointers in the KST,
but getting or setting object search rules would be accomplished
via search_facility_. Include search rules would function
exactly as they do presently, but find_include_file_ would be a
\'lritearound to search_facility_. For the sake of efficiency it
could be an entry in the same procedure with search_facility_.
Check_info_segs would call the facility to get a list of
directory pathnames instead of maintaining a 1 ist of directories
internally. Help would call the facility to find info files.
Macro-interpreting programs would be modified to call
search_facility_ instead of expand_path_ and hcs_$initiate_count.
Peruse_text would be modified to call the facility. If the
facility were invoked to find some segment, and the user had not
explicitly established his or her own search rules for the search
suffix in question, the defalts would be as follows: object
segments would continue to use the current defaults, include
files would use current defaults, help and cis would get as their
default the directoreies >doc>lml_info_segs and >doc>info, for
peruse_test the default would be >doc>pt, and teco would get
\'lorking_dir, home_dir and TECO-dir. For all other groups the
default would be 11\'/orking_dir", so for the macro-interpreters
other than teco this would be equivalent to the current
situation.)

Detailed Proposal of New Subroutine

The subroutine search_facility_ would have the entry points
described below.

Entry: search_facility_$set

Given an array of char(168) strings containing absolute
directory pathnames and keywords, this entry establishes those
search rules for a suffix or suffixes.

dcl search_facil ity_$set ext entry (ptr, fixed bin, ptr, fixed
bin, fixed bin(35));

dcl suffix_array(l~) char(32) aligned;
dcl search_rule_array(M) char(168) aligned;
call search_facil ity_$set Caddr(suffix_array), num_suffixes,

-

Page 6 Consolidated Search Facility

addr(search_rule_array), num_rules, code);

This is the only place that grouping of suffixes is
specified.

Entry: search_facil ity_$get

This entry point would fill in a user supplied rules array
with absolute directory pathnames and keywords.

d c 1 search_ fa c i 1 i t y _ $ g e t ex t en t r y (ch a r (3 2) , p t r, f i x e d b i n,
fixed bin(35));

dcl search_rule_array(20) char(168) aligned;
call search_facil ity_$get (suffix, addr(user_rule_array),

num_ru 1 es, code);

Upon successful return from the subroutine, code would be 0,
num_rules would be set to the number of rules currently active
for the search suffix, and the first num rules rules of
user_rule_array would contain the rules (keywords would appear
\'/here they were used In setting rules). Otherwise, if there were
more rules active than could fit in user_rules, code would be set
to error_table_$too_many_sr, num_rules would be set to the number
of rules active so the calling program could allocate more space
and try again, and user_rule_array would not be modified. If no
search rules were active for the suffix suppl led, a non zero code
would be returned but user_rule_array would contain the default
(working_dir) and num_rules would be set to the number of default
rules. A new error_table_ code for "search suffix not found"
would be needed.

Entry: search_facility_$star_get

This entry could be used to get all currently active search
suffixes and associated rules, or only the rules for a subset of
the suffixes with active rules, the subset being specified by
star names.

dcl search_facil ity_$star_get ext entry (ptr, fixed bin, ptr,
fixed bin, fixed bin, fixed bin, ptr, ptr, ptr, fixed
bin(35));

cal 1 search_facil ity_$star_get (addr(star_name_array),
nurn_star_narnes, area_ptr, nurn_groups, nurn_suff ixes,
num_rules, group_ptr, suffix_ptr, rule_ptr, code);

dcl 1 group(nurn_groups) based (group_ptr),
2 rule_index fixed bin,
2 rule_count fixed bin,
2 suff ix_index fixed bin,
2 suff ix_count fixed bin;

dcl suffix(num_suffixes) char(32) based (suffix_ptr);
dcl rule(num_rules) char(l68) based(rule_ptr);

-

Consolidated Search Facility Page 7

The calling program would supply an area and pass a pointer
to it. The current search suffixes would be checked against the
star names in star_name_array (using match_star_name_), and
qualifying suffixes would be output in suffix_array which would
be allocated in the supplied area. Each structure "group(i)"
would describe a set of rules for the group, starting at rule
(group(i).rule_index) and continuing for group(i).rule_count
rules. The suffixes starting at suffix_array
(group(i).suffix_index) going for group(i).suffix_count suffixes
would be using those rules. This would make it easy to print
rules:

and so on.

ec:
qedx:

working_dir,
>udd>RDMS>macros;

incl.pl!:
incl .fortran:
incl .alm:
bcp 1 :
runoff:

working_dir,
>udd>RDMS>include,
>ldd>include;

The array of group structure returned for the situation
above would be:

Entry:

group(l):

group(2):

ru 1 e_i ndex = 1;
rule_count = 2;
sufftx_index = 1;
suff tx_count = 2;

rule_index = 3;
rule_count = 3;
suff ix_index = 3;
suff ix_count = 5;

search_facility_$expanded_get

This entry would fl 11 in a search rules array 1 ike that
described for search_facility_$get_search_rules, but no keywords
are returned. Any keywords in the current search rules for the
search group are expanded into the directory pathname(s) implied.
This entry is intended for use by commands such as
check_info_segs which do something for each directory of the
current search rules, instead of finding one segment using those

Page 8 Consolidated Search Facility

rules.

dcl search_facil ity_$expanded_get ext entry Cchar(32), ptr, fixed
bin, fixed bin(35));

call search_facility_$expanded_get (suffix, addr(user_rules),
num_rules, code);

Entry; search_facil ity_$initiate_count

Given a suffix and a search_name, this entry would attempt
to find a segment named search_name in the directories of the
search rules for suffix. A 11 referencing_ptr" would be passed for
use if the referencing_dir rule were encountered. When searching
at the top level, this pointer would be null (as for finding a
command or a macro named in the command line invoking a
macro-interpreter). The pointer would be non-null when a second
level search would be performed: a command calls a subroutine,
so referencing_ptr points to the segment containing the command;
or an include file includes a lower level file, or a macro
invokes a macro.

dcl search_facil ity_$initiate_count ext entry (char(32), ptr,
char(32), ptr, fixed bin(2~), fixed bin(35));

call search_facil ity_$initiate_count (suffix, referencing_ptr,
search_name, seg_ptr, bit_count, code);

Keywords

Search rules are either absolute directory pathnmes or
keywords. Absolute pathnames always begin with the greater-than
character(">"). Keywords can be divided into two groups: those
co~puted once per process, and those computed once for each use.

Group One: CoMpute Once per Process

home_dir
process_dir
system_libraries (object search rules only)

Group Two: Compute at Each Use

working_dir
referencing_dir
initiated_segments (object search rules only)

The rules are self explanatory. For upwards compatabil ity,
the rule "system_libraries" must be recognized for object segment
search. The rule "initiated_segments" must be recognized for
object segment search also, even though it is not really a rule.
(It is a reminder that the hardcore requires that the KST be

Consolidated Search Facility Page 9

searched before any other rule is invoked, but this "rule" must
always appear first and cannot be turned off.)

New Commands

The functions of existing search rule manipulating commands
11 s e t_s ea re h_ru 1 es", "pr in t_sea rch_ru 1 es", "add_sea re h_ru 1 es",
"delete_search_rules" and "add_search_di rs" \'Ji 11 be taken over by
a single new command "searcher'' (short name "sh"). The old
commands will become entries In this new command.

Entry:

Usage:

searcher
sh

searcher <subcommand>
or

sh <subcommand>

where <subcommand> is any of the following:

1) To replace current rules for a suffix:

searcher replace <suffix> <rulel> ... <ruleN>

2) To add a rule or rules to the current rules for a given
suffix:

searcher add <suffix> <rulel> ... <ruleN>

Rules <rulel> through <ruleN> are added at end of the current
rules for <suffix>.

searcher add <suffix> <rulel> <ruleN> -after <existing_rule>

"-after" is recognised by the add subcommand as having a
special meanrng. <existing_rule> must be in the search rules
for <suffix>. In the new rules for <suffix>, rules <rulel>
through <rule~> are appended after <existing_rule>.

searcher add <suffix> <rulel> ... <ruleN> -before <existing_rule>

"-before" is also recognized as having a special meaning. In
the new rules, <rulel> ..• <ruleN> are inserted before
<existing_rule>.

searcher add <rulel> <rule2> -after <existing_rulel> <rule3>
<rule4> <ruleS> -before <existing_rule2> <rule6> <rule7>

The three types of add subcommand can be combined. The above
command appends <rulel> and <rule2> after <existing_rulel>,
inserts <rule3>, <rule4> and <ruleS> before <existing_rule2>,
and appends <rule6> and <rule7> after the end of the rules.

Page 10 Consolidated Search Facility

3) To delete a rule or rules from the search rules for a suff Ix:

searcher delete <suffix> <rulel> ••• <ruleN>

4) To print the search rules active for a suffix, or to print
all current rules:

searcher print <suff ixl> ..• <suff ixN>

The rules for the suffixl mentioned will be printed. If
no suffixl are specified, all rules currently active are
printed with associated suffixes (see
search_facil ity_$star_get above for an example).

5) To initialize rules for all suffixes:

searcher init (path>

(path> is the pathname of an ascii text segment. The
entryname part of path must end in ".sh. If ".sh" is not the
last component of the entryname portion of path, it is added.
If no path is specified, it is assumed to be
>udd> user project > user name > user name .sh (for example,
>udd>RDMS>McGary>McGary.sh).

The ascii text segment contains rule specifications in
the form:

<suffix>:

<suffix>: <rulel>, . . . ,
<ruleN>;

Whitespace is ignored. For example, to initialize
tranlator (include) search rules and macro-interpreter search
rules, a user might create an ascii text file named
user name .sh in his home directory, and this text file

would contain:

incl .pl l:
incl .alm:
incl .fortran:
bcp 1 :
runoff:

ec:
qedx:
teco:

\<.fork i ng_d i r,
>udd>RDMS>McGary>version2.include,
>udd>RDMS>include,
>ldd>include;

working_dir,

Consolidated Search Facility

>udd>RDMS>macros,
>am;

Page 11

Note that the input form required is the same as that
which would be produced by "searcher print", which dumps all
search rules.

New Active Function

Finally, a command I active-function which searches for a
segment using the search rules of a search suffix would be
usefu 1 •

Entry;

Usage;

searcher_where
swh

searcher_where <suffix> namel ••• nameN
or

searcher_where <suffix> namel ••• nameN
or

swh <suffix> riamel ••. nameN
or

swh <suffix> namel .•• nameN

For each namel, search_facility_$initiate_count is ca·11ed.
If the invocation was as a command, and the name is found, the
full pathname, including the primary name on the segment, is
printed. If a namel is not found an error message is printed.
If the invocation was as an active function, the return value is
formed by concatenating together the pathnames found for each
namel separated by blanks. If a namel was not found during
active function invocation, active_fnc_error_ is invoked unless
the control argument "-no_error" or 11 -ne" appeared in the
argument 1 is t. In that case no pathname is appended to the end
of the return string for the namel, and the program continues
processing with the next namel. {This allows an exec_com or
absin statement such as

&if' equal swh info x -noerr 1111 &then •••
which checks if a segment "x. Info" is encountered is in the
"info" search path.) If a namel does not end in <suffix>,
<suffix> is appended for the search. Either the command or active
function forms also take the control arguments "-directory" or
"-d" {return only the directory portion of the full pathanme) and
"-terminate" or "-t" {terminate a single nul 1 reference name from
the segment if it was initiated).

•

Page 12 Consolidated Search Facility

Overview of Internal Operation of search facility

Design Principles:

1) Installation of the new facility should not degrade the
performance of the old interface that become writearounds.

2) There should be no extra overhead for a user who does not
use the new features.

3) The new facility should be reasonably efficient.
4) At no time should a user get an inconsistent set of search

rules (half old, half new if interrupted while resetting).

A Possible Implementation:

Each distinct set of search rules would be recorded in a
"Rules" structure:

dcl 1 Rules aligned based,
2 allocated bit(l) initC"l"b),
2 usage_count fixed bin,
2 num_active fixed bin,
2 rule(20),

3 opcode fixed bin,
3 path char(l68);

If opcode were 0, path would be a directory pathname. Otherwise,
opcode indicates a keyword rule: 1 -> working_dir, 2 ->
referencing_dir, 3 -> home_dir, 4 -> process_dir. When the
initiate_count entry is invoked, it uses opcode to index in a
transfer vector:

go to op(opcode);

op(Q):
di r = path;

make_call:
call hcs_$initiate_count(dir, search_name,

bit_count, 0, seg_ptr, code);
if seg_ptr ~=null() then return;
else go to next_rule;

op(1):
ca 11 ge t_\',,d i r _Cd l r);
go to make_call;

op (2) :

etc.

II II ,

The bit switch "allocated" would be used to remember if the
structure is internal static, or had been allocated in the system
free area and mi.ght be freed. "usage_count" would record the

•

Consolidated Search Facility Page 13

number of suffixes associated with the Rules. When usage count
is reduced to zero, the structure may be freed. -

There would be an internal static version of Rules recording
the defaults for the currently recognised suffixes. The suffixes
" i n c 1 • p 1 1 " , " i n c 1 • a 1 m 11 , 11 i n c 1 • f o r t r a n 11 , " run o f f 11 an d " b c p 1 11 wo u 1 d
have the default rules of Static_lnclude_Rules, "pt" would have
Static_pt_Rules, "info" would have Static_info_Rules, and "teco"
would have Static_teco_Rules. Since the current default for the
system version of exec_com and qedx is the working_dir, both
could use Static_wd_Rule.

The rules for a search suffix would be found by looking
through a "Table" structure:

dcl 1 Table aligned based,
2 allocated bit(l) initC"l"b),
2 next_Table_ptr ptr,
2 num_active fixed bin,
2 binding(20),

3 suffix char(32),
3 rule_ptr ptr;

An internal static version of this structure would bind the
currently recognised suffixes to the appropriate default
structures:

dcl 1 Static_Table aligned internal static,
2 allocated bit(l) initialC"O"b),
2 next_Table_ptr ptr initial(null()),
2 binding(20),

3 suffix char(32) initial("incl.pll", "incl.alm",
"incl .fort ran",
"runoff", "bcpl",
"info",
"pt";
"teco",
"qedx",
"ec",
(10) (1) ""),

3 rule_ptr ptr initial C (5) adrlr(Static_lnclude_Rules),
addr(Stattc_info_Rules),
addrCStatic_pt_Rules),
addrCStatic_teco_rules),
(2) addr(Static_wd_rule),
(10) nul 1 ());

If a user changed from the default rules by setting search
rules for any suffix, a new Table would be allocted and
appropriate Rules structures would be allocated and filled in.
At the last moment, when the new Table and Rules structures were
consistent with each other, an internal static pointer
"first_table_ptr" (which would be initial addr(Static_Table),)

...

Page 14 Consolidated Search Facility

would be .set to the addre~s of ~he new Table. Then the old Table
and Ru.les could be freed. In this way a user would never receive
an inc6nslstent set of rules.

If a ·user sets search rules f6r more than 20 suffixes, a
second (or third) Table ~ould be alJocated1 and the
next_Table...;.ptr of the first Table would be set to the address of
the second· Table.

(END)

