MULTICS TECHNICAL BULLETIN MTB~-106

Date: July 30, 1974

To: Distribution

From: Jeff Broughton

Subject: A New Symbolic Debugger

The current system debugger, debug, is not well suited for
use by the unsophisticated user. It is very much machine
language oriented and has a confusing and error prone syntax. In
addition, it is deficient in its handling of include files, quick
blocks, and certain data types. Probe is intended to be more
simple to use and to deal with the constructs of the user program
in a more straightforward way. Notable differences between it
and debug are:

1) Probe cannot modify or examine code.

2) Breakpoints are implemented Iin such a manner that an
active invocation of probe need not be on the stack for
a break to occur.

3) The syntax for breaks is potentially far more flexible.

4) Quick procedures and blocks, as well as normal begin
blocks are recognized 1in a stack trace. Support
procedures are excluded (at the user's discretion) from
the stack trace.

5) Type checking and conversion is performed in
assignments.

6) Arguments are converted to expected type in a call, if
entry argument descriptors are present.

7) A wider range of constants, including decimal and
complex, is supported.

There will soon be a version available for use in the
Multics Library., Comments are welcome.

Due to a bug in the runtime symbol table, the address of
entries in the program being examined cannot he found. As a
result, the "call" and "use'" commands currently cannot be used
with those entries. Please report any_other bugs you find to me.

Multics Project internal working documentation. Mot to be
reproduced or distributed outside the Multics Project.

MULTICS PROGRAMMERS“Y MANUAL probe

Command
07729774

Name: probe, pb

The probe command is a symbolic debugging aid that allows
the user to interactively examine the state of his program.
Commands are provided to display and alter the value of
variables, to interrupt a running program at a particular
statement by use of breakpoints, to list the source program, to

examine the stack of block invocations, and to invoke external
subroutines and functions.

In order to debug a program with probe, the program must
have a standard symbol table that contains information about
variables defined in the program and a statement map that gives
the correspondence between source statements and object code. A
symbol table and statement map 1is produced by the PL/I and
Fortran compilers if the #-table" option 1is specified. (A
program can also be compiled with the ¥-brief_table" option
which will produce only the statement map and disable the
ability to reference variables.)

To store certain information about programs being debugged,
probe uses a segment in the user’s home directory called
Username.probe where Username is the user’s personid. This
segment is created automatically when needed.

Introduction:

The primary use of probe 1i1s to examine a program whose

execution has been suspended. This can occur in one of several
ways.

First, execution can be interrupted as a result of an error
occurring in the proaram such as zerodivide or overflow. After
an error message is printed on the user’s console, and a new
command level entered, probe can be called and commands issued
to it to identify the cause of the error.

‘econd, the user can, as always, stop a run—away program by
"quitting'.

Third, the user can designate, by use of probe’s break
commands, statements on which the nrogram is to stop and directly
enter probe. A 1list of commands associated with the break
would then be executed automatically. These commands could print
a variable, tell what line was just executed, or cause probe to
read additional commands from the console. In this way, the user
can follow the progress of his program before an error occurs.,

c 1974, Honeywell Information Systems Inc.

: i
i probe | MULTICS PROGRAMMERS”Y MANUAL
] '

Page 2

In all of the cases above, an active program has been
suspended. This means that variables of all storage classes, in
particular automatic, exist and can be displayed. Probe can
also be used to examine a non-active proaram -- one that has
never been run or that has completed. Used in this manner, probe
can be used to look at static variables, and the program source,
though "the most common use is to set breaks before actually
running the program.

Probe keeps track of a current statement, a current block,
and a current control point. The current statement designates a
particular source oprogram statement and is referenced by many
commands., The current block identifies a procedure, subprogram,
or begin block whose variables are to be examined. Moreover, it
specifies a particular stack frame occupied by that block so as
to differentiate between different occurrences of a variable in a
recursively invoked procedure. The gurrent control poipnt marks
the statement at which execution was suspended in the user’s
program, For convenience, they will be refered to as the sgurce
pointer, the block pointer, and the control opointer,

respectively.
Usages
nrobe =-<procedure>=-

where <procedure> is an optional argument that gives the name of
an entry in which the user is interested. If the procedure is
active, the control and source pointers are set to the last
statement executed, and the block 'pointer is set to the most
recent invocation of the procedure. If it is not active, then
the control and source pointers are set to point to the entry
statement, and the block pointer designates the outermost block
of the procedure.

[T a <procedure> is not specified, probe checks if an error
or quit has occurred and, by default, uses the procedure that was
executing. The pointers are set as if the user had specified it
explicitly. If no error has occurred, then probe prints a
message and returns.

To execute a program that contains a breakpoint, the program
can be called normally from command level, or from within probe
by wuse of the call or value requests, Note wellt for the
breakpoint to take effect, proe must be must be invoked at least
once in the process.

When probe is entered as the result of executing a procedure
with a breakpoint set in it, the control and source pointers are

MULTICS PROGRAMMERS# MANUAL probe

Page 3

set to the statement on which thre break was set, and the block
pointer to the block that contains that statement.

In general, after an error, quit, or break, things are set
up by default much as one would expect. The user should,
however, explicitly name a <procedure> when he is interested in
working with a non—-active one.

Once probe has been entered, the user can issue commands to
it in order to examine his program.

Command Syntax:

The command language recognizes three constructs: simple
commands, command lists, and conditional commands. [Loosely, a
simple command is a basic probe request, and a command list is a
list of commands separated by semi-colons (or newlines). A
conditional command 1is a simple command or 1list (surrounded by
parentheses) prefixed by a conditional predicate that controls
when the request is to be performed. Examples follow in the next
section.,

In the discussion of commands that follows, meta-lanquaae
symbols are used for certain constructs (e.g. <expression>).
Their meaning should be apparent from context and from examples
given. A complete discussion can be found later 1in this
document. ’

i probe | MULTICS PROGRAMMERSZ MANUAL
Page 4

Basic Commands
yalue, ¥

value {<expression>i<cross section>)

OQutput on the <console the value of <expression>. The value
request allows the user to display the value of variables,
builtin functions such as addr and octal, and the value returned
by an external function,

value var

value p => a.b(]j).c
-value addr (i)
value octal (ptr)
value function (2)

Array cross-sections can be displayed by specifying the upper and
lower bound of the cross-section as followst

value array (15, 1)

which would print array(i,1), array(2,1), ..., array(5,1). More
than one dimension can be iterateds for instance a(1:2,1:2) would
print, in order, a(l,1), a(l,2), a(2,1), a(2,2).

let, 1

let {<variable>i<cross section>) = <expression>

Set the <variable> specified to the value of the <expression>.
If the types are not the same, conversion is performed accordina
to the rules of PL/I. Array cross-sections can be used with the
same syntax as in print. ©Note that one may not assign one array
cross-section to another.

let var = 2

let array (2,3) = i
let p => a.b(l22).c
let ptr = null

+ |
= |0b

Warning: because of compiler optimization, the change may not
have immediate effect in the program.

MULTICS PROGRAMMERSZ MANUAL , ' i probe |

continue, ¢

continue

Cause probe to return to its caller. If entered from command
level, probe returns to command level. After a break, the user’s

program is, in effect, restarted. To abort s debugging session,
the quit button must be used.

call, ¢l
call <procedure((<expressioni,<expression>l...])

Call the subroutine with the arguments given., If the procedure
has descriptors that gives the type of the arguments expected,
the ones given are converted to the expected types otherwise,
they are passed without conversion. The print request can be
used to invoke a function, with the same sort of argument
conversion taking place. Notes {f the procedure has no
arguments, a null argument list, * ()", must be aiven.

call sub (¥abc", p => p2 =-> bv, 250, addr(j))
call sub_noargs ()
print function ("0O10%b)

gotao, g

qgoto <label>

Cause an exit from probe and a non-local goto to the statement
specified.

goto label_var - transfer to value of label
variable

goto action (3) - transfer to label constant

noto 29 - transfer to statement on line 29
of current program

qgoto $110 - transfer to line labeled 1110 in
the fortran program

qoto s$c,| - transfer to the statement

following the current statement

Warningt because of compiler optimization, unpredicatable results
may occur.

H i
| probe | MULTICS PROGRAMMERS? MANUAL
Page 6
Source Commands
source, s¢

source [n]

Directs one or n statements beaginning with the current statement
(i.e. the source pointer) to be printed. Note: only executable
statements for which code has been generated can be listeds
however, if several statements are requested, interveninag text
such as comments and non—executable statements is included in the
output.

position, Rs
position [<label>]

position (+i{-)n

Set the source pointer to the statement indicated or to plus or
minus n executable statements relative to the current statement.
IfT no 1label or offset is given then the statement designated by
the control pointer is assumed.

position label - set the source ptr to label: ...

nosition action (3) - to action(3)s ...

position 2-14 - to statement on line 14 of file 2
of the program

nosition +2 ' - move forward 2 statements in the
source

nosition -5 - move back 5 statements

In addition, the position command can be used to search for an
executable statement that contains a specified strina, and |{f
found set the source pointer to that statement:

nosition "“<string>"

The search beains after the current statement and continues
around the program as in the editors edm and gedx. Notet: because
of reordering of statements by the compiler, which, among other
things, moves subproarams to the end, the search may not
necessarily find thinas in the same order as one would expect
from a source listing of the program.

nosition "write (6,10)" - locate the statement in the
. proqgram
position Ystr = Wuay - locate str = 43

sosition “g+2"3 source - locate and print the statement

)

MULTICS PROGRAMMERS’ MANUAL probe

Page 7

Symbol Commands
stack, sk
stack [[i,In] [alll]

Trace the stack backward from the ith frame for o frames. If no
limits are given, the entire stack is traced. The trace consists
of a list of active procedures and block invocations (includina
quick blocks) beginning with the most recent. In addition to the
name of the block, a frame or level number is agiven, Aas is the
name of any conditions raised in the frame.

stack - trace the whole stack

stack 3 - trace the three most recent
frames

stack 3, 2 - tracz th 3rd and 4th frames

Normally, system or subsystem support proc¢edures will not be
included in the stack trace. If desired, they may be included by
specifying "all".

stack all
stack 3,5 all

use, u

use [<block>]

Selects a new block or procedure to be examined. If no <block>
is given, then the block oriainally used when probe was entered
is assumed. The block pointer is set to the <block> sneacified so
that variables in that block can be referenced. In addition, the
source pointer is set to the 1last statement executed in the
blocks in this way, the point at which the block exited can be

found with the help of the source command. Acceptable <block>s
includes

<procedure>
<label>
level i
-1

Here <procedure> is the name of a procedure whose frame is
desireds its usage is essentially the same as if wused on the
command line. A <label> denotes the block that contains the
statement identified by the label or line number -- for instance,
the label on a beain statement denotes that beain block, If the
<label>s block is not active, the source pointer is set to the

probe MULTICS PROGRAMMERS’ MANUAL

Page 8

statement specified. f'level i" uses the jith block frame from a
stack trace. *-nY uses the pnth previous instance of the current
block, allowing one to move back to a previous recursion level,
(If more frames are requested than actually exist, the last one
found is used,)

11se sub - use block procedure sub occupies

use label - use block that contains label:

use level 2 - use second frame in stack trace

use -1 _ - use previous instance of current
block

11se =999 - use last (oldest) instance

Note: when a level is specified, the last trace mode specified
(support procedures included or excluded) is used to find the
level requested.

symbol, sb

symbol <identifier>

Display the attributes of the variable specified and the name of
the block in which its declaration is found. If the variable has
variable size or dimensions, an attempt is made to evaluate the
size or extent expressions 1if the value is not available, then
"x" is used instead.

where, uwh
where [sourceiblockicontrol]

Display the current value of one or all of the pointers. Source
and control give the statement number of the corresponding
statement. Block gives the name of the block currently being
useds if the block is active, its level number is also given.

where = qive value of all three pointers
where source - qgive the value of the source
pointer

*)

MULTICS PROGRAMMERSZ MANUAL

jo]
=
Q
o
D

Break Crmmands
before, b
before [<label>][t {<command>i (<command list>)}]

Set a breakpoint before the statement snecified by <label> and
cause the command(s) niven to be associated with the breav, If
no <label> is given, the current statement is assumed, If no
commands are qgiven, "halt" is assumed. When the running program
arrives at the statement, probe is entered hefore the statement
is executed, and the commands are pnrocessed automatically. When
finished with the commands, probe returns, and the nrogram
resumes at the statement at which the brea% was set. In effect,
the user can Yinsert" probe commands into his proaram.

heforet (value vars value var?)
- set a break before the current

statement

before quick: value x - set a brea¥ before the statement
labeled quick

before - set a break with the dhalt!
command before the current
statement

Note that the command list may extend across line boundaries if
necessary.

after, a
after [<label>l(: {<command>! (<command list>)}]

is the same as before except that the break is set gfter the
statement designated. This means that the command 1list is
internreted after the statement has been executed. If the
statement branches to another location in the proaram, probe is
not entered. The difference between settinag a break after one
statement and setting another before the next is that a transfer
to the next statement causes a break for the before case bhut rnot
for the after case. :

halt, h
halt

Causes probe to stop processing its current input and read
commands from the console. A new invocation of probe is created
with new pointers set to the values at the time "halt" was
executed. It 1is of primary use as part of a break command list

.

—— et st

MULTICS PROGRAMMERSZ MANUAL

- m— -

1
]
i Drobe
]
]

Page 10

as it enables the the user to enter commands while a program is
suspended by a break. In effect, he can halt a runmning proaran.
A subsequent continue command causas probe to resume what it was
doing before it stopped —— for instance, finish a breal command
list and return to the nrogram. The command:

hefore 29: halt

causes the program to halt at statement 29 and allows the user to
enter probe commands. Continue would restart the program,
Similarlys

aftert (value as$ halts value b)

causes the value of a to be printed before the program halteds
later, after the user entered a Y“continue" command, the value of
b would be printed, and the execution of the program resumaed.

reset, r

reset

reset {(atiafteribefore) <label>
reset <procedure>

reset *

Delete breaks set by the before an after commands, Just "reset’
deletes the last break that occurreds; the <label> form deletes
breaks set before and/or after a statements <orocedure> and ¥*¥
can be used to reset all the breaks in a seament, and all breaks
in all segments, respectively.

reset ' - delete the current break
reset at 34 -~ delete breaks set before and
after 34
reset after 34 - delete the break set after 34
reset sub - delete all brealks in sub
reset =% - delete all known breaks
status, st
status

status {(atiafteribefore} <label>
status <nrocedure>
status %

Give 1information about what breaks have been set. The scope of
the requests is similar to "reset!”:

MULTICS PROGRAMMERS” MANUAL i probe |
Page 11
status -~ 1ist the current break
status before label - list the break set before the
statement at labels
status sub - tell what breaks have been set in
sub
status x - tell what procedures have breaks

set in them
pause, pa
pause

Equivalent to '"halts reset" in a break command list, it causes

the procedure to execute a break only once -- stopping, then
reseting the break.
step, s

step

Set break consisting of *pause" after the statement following the
control pointer and “continue', It enables the user to step
throuch his program one statement at a time. Notes if A
statement transfers elsewhere, the break does not hanpen until
sometime later, if ever.

Miscellaneous Commands
mode
mode {(briefilong)
Turn brief message mode on or off. In brief mode, most messages

aenerated by probe are much shorter and others are surpressed
altogether. The default is long.

execute, ¢
execute "<string>*

Pass <string> to the command processor to be executed as a normal
Multics command.

———

probe MULTICS PROGRAMMERSY MANUAL

B e]

Page 12

Conditional Predicates
it
if <conditional>: {(<simple command>i(<command list>))}

The command(s) are executed if the <conditional> evaluates to

true. The <conditional> can be of the form
<expression><op><expression> with <=, <, =, *=, >, >= allowed as
<0op>S.

if a < bt let p = addr (a)

This predicate is of most use in a break command list as it can
.be used to cause a conditional stop:

befores if z ©= "ID"bs stop
would cause the prooram to stop only when z = "{0¥b,
while, wl
while <conditional>: {<simple command>i(<command list>))}

Allows iteration by executing the command(s) as 1long as the
<conditional> is true.

while p *= nulls (print p -> r.vals let p = p =-> r.next)

MULTICS PROGRAMMERS? MANUAL

o)
]
e
o
D

Expressionss

Allowable <expression»s include simple scalar variables,
constants, and probe builtin functions. The sum and difference
of computational values can also be used.

Variables can be simple identifiers, subscrinted references,
structure qualified references, and locator qgualified references.

Subscripts are also expressions. Locators must be offsets or
pointer variables or constants.

running_total

salaries (p -> i - 2)
A.b(2)ec(3) or a.b.c(2,3) etc.
X.y => var

Arithmetic, string, bit, and pointer constants are
supported. Arithmetic constants can be either decimal or binarvy,

fixed or float, real or comnlex. Also, octal numbers are
permitted as abbreviations for binary inteqers (e.a. 120 = 10).
~123 45,37 ' 2.1-0.31
10b 4,73el0 123456700

Character and bit strings without repetition factors are allowed.
Character strings can include newline characters. 0Octal strinas
can be wused in the place of bit strinos (e.q. "123%" =
H001010011%b),

MabcH "1010%
Hquote™™instrinag" 012345670

Pointer constants are of the formt sea#iword#(bit#). The sen#
and word# must be in octal. The bit# is optional and must be in
decimal. They can be used as locators.

21415764 ‘ 23217413(9)

Three builtin functions are provided by probet addr, null,
and octal. The addr function takes one araument and returns a
pointer to that argument. Null, taking no arauments, returns a
null pointer. They are the same as in PL/I. The function octal
acts very much like PL/I“s unspec builtin in that it treats its
argument as a bit string of the same length as the raw data
value, and can be used in a3 similar manner as a psuedo—-variable.
However, when used in the print command the value is disnlayed in
octal. (Data 1items not occupyina a multiple of three bits will
be padded on the right.)

probe MULTICS PROGRAMMERSY MANUAL

Page 14

Label Referencest

. A <label> identifies a source program statement and can be a
. 1label variable or constant, a line number as it appears on a
source listing (i.e. [file-31line), or a special statement
designator: $c representing the Hcurrent statement", $b
representing the statement on which the last break occurred, and
snumber for fortran labels. An optional offset of the form ",s®
is also allowed.

label - statement at labelst ...

label_var - statement to which 1label_var is
set

17 - statement on line 17 of proqgram

3-14,2 - statement 2 on line 14 of file 3

$b - statement at which 1last break
occurred

Sc, | - statement after current statement

5100 - fortran statement labeled 100

Generally, a 1label can also be the name on a procedure or entry
statement.

Procedure References:

A <procedure> is considered to be a reference to an entry
variable or constant. External names can be used.

Evaluation of Variable References:

When a variable is referenced in a command, probe attempts
to evaluate it by first checking for an applicable declaration in
the current block, and if necessary in 1its parents. IT not
found, the list of builtin functions is searched. Finally, when
the context allows a <procedure>, a search is made following the
user’s search-rules,

The Dblock in which to look for a variable can be altered by
the use command that sets the current block. For example, 1if
Bvyalue var" displays the value of var in the current block, then
Puse =13 value var" displays the value of var at the previous
level of recursion. A shorthand is available for referencing
variables in other blocks =- an optional block specification:

<variable> [<block>]

MULTICS PROGRAMMERS” MANUAL probe

Pace 15

where block is the same as in the use command, The wuse of
<block>s in this manner does not alter the block pointer.

var{-1] - looks for previous value of var

abclother_block] - looks in %"other_block¥® for abc

xyz{ 39] - looks in block that contains line
39

n.mllevel 4] - looks in block at level 4

g(2)[{subl - looks in procedure sub

A Dblock specification can be used on an identifier anywhere the
variable could be used. However, a block specification on a
label or entry constant is ignored unless 1) the relative (-n) .
format is used, and 2) the label or entry is itself used in a
block specifcation. In such a case, it is taken to mean the nth
previous instance of the block designated by the label or entrys
that 1is, ‘"varisubl—-211" references var in the second previous
invocation (third on the stack) of sub.

probe MULTICS PROGRAMMERSY MANUAL

- -
- m— -

Page 16

Sample Debugging Sessiont

The following is a sample attempt at debugging a program,
It 1is not claimed that the program does anything useful, or that
this is the best way to debua the proaram. The purpose is merely
to give an example of how certain nrobe commands can be applied.
A listing of the source of the program, test, is given on the
next pages the sample outout follows with #>% wused to denote
lines typed by the user.

In order to use probe to debug a program, the program must
be compiled with the ¥#-table* option. Generally, the user should
generate a symbol table for any program that he does not have
good reason to believe will work.

On 1line 5, the wuser calls his programs noticing that it
seems to be looping, he stops it by hitting the quit button.
After the wuser invokes probe, it responds by telling that the
internal function fun" was executing line 38 when interrupted.
Since the source pointer was automatically set to that line, A
request to print the current statement with "source%, displays
the source., The statement causing an error could be displayed in
a similar manner.

The stack command was then used to see what called what.
The ouput shows that procedure *test" was called from command
level, and then, in turn, called fun. While fun was executing, a
quit occured and established a new command level. To determine
whether fun was called from line 17 or line 27 of test, the use
command is used to find the point at which test exited. Since
"use® also sets the block pointer at the same time, the user can
check if "s.num" has the correct value with the value command.

The wuser decides that it would be worthwhile to trace the
value of i, Rather than recompiling his program with a put
statement added in a strateqgic location, pnrobe allows him to set
a break containing a value command to accomplish the same thing.
Wantina to set the break after the do statement on line 16, the
user searches for it with the position command. Ysource! is used
to verify that the correct line was found. The continue command
then causes probe to return (to command level).

To abort the suspended proaram test, the user gives the
release command to Multics. If he had done this Just after
quitting, he could not have used probe to find out much about
what happened.

i
MULTICS PROGRAMMERSZ MANUAL i orobe

Page

1 tests procedures

2

3 declare

4

5 (i, J) fixed binary,

6 ! s structure based (p),

7 2 num fixed binary,

8 2 b (n refer (s.num)) float binary,
9 p pointer, n fixed binary,
10 sysprint files

11

12 '

13 n = 5%

14 allocate s set (p)s

15

16 do i =1 to s.nums

17 S.b(i) = fun (i, 1)}

18 ends

19 put skip list (s.b)s
20
21 do J = s.num to | by =13
22 s.b(}) = fun (-3, -1)3s
23 ends
24 put skip list(s.b)s
25
26 returns
27
28
29 fun: procedure (b, i) returns (float binary)s
30 :
31 declare
32 (b, 1) fixed binarys
33
34 if b=20
35 then return (1)
36 else dos
37 b=b - i3
38 return (2%xb + fun (b, i))3%
39 ends
40
41 end funs
42
43

44 end tests

— gt B

MULTICS PROGRAMMERS? MANUAL

i probe

Page 18

The program is started once ansin, but now, after each time
line 16 1is executed, the break occurs and probe displays the
value of i. Clearly, it is not being incremented as it should.
Since this approach is not producing any useful information, the
user Aaborts the program and trys to delete the break. The status
command is used to tell what breaks have been set in the senment
test, and then to see the break set. The break is then deleted
with the reset command. Note that if there had also been a
H“Break before 16", then the command Yreset at 6% would have
deleted both.

The user next decides to see what is qgoina on in fun, so he
sets a break to halt it every time it is invoked. By looking at
the listina, he knows that the first statement in fun is on line
34, so he Jpositions' the source pointer to that statement and
sets a break to halt the proaram. To accomplish the same thing,
"before 34 halt¥ could have been used,

The program halts when the break before line 34 is reached.
The user displays b and i getting the values he expected. The
where command 1is also used to see what the state of things is.
Continue ("c") restarts fun which calls itself recursively and
stons again. The stack command (showinng the last five frames)
verifies that fact. The user disnlays the b in the current
instance of fun (at level 2) and in the previous one (at level
3). Mistakenly expectina the Db’s at different levels to be
different, he oqets suspicious. The variable "i¥ has the value
expected, but the symbol command shows that it is wrong one —
the oparameter to fun, not the loop index. To get the correct
one, he must look in the frame belonging to the procedure test.
This "i" has been set to zero. The user then realizes his error.
The function is modifying its arqgument (the loop index "i®) on
line 37. Done with debuaging the program, %reset"® 1is used to
delete the currently active break (the one that just occurred),
and the program is aborted.

MULTICS PROGRAMMERS” MANUAL :

QUDAWN—-OOVOO~NOU»WN —

—t - — —— ———_ s ——-

NN = — —
N—= OV~

N NN N
O AW

N NN
O 00~

w W w
N -0

wWwwbwww
DO AW

HA AW
N — O

NN
ENIA

45
46
47
48

>
(quit)

(quit)

pli test =-table
PL/1
r 1248 3.211 28.336 289

test

QUIT
r 1250 5.371 6.702 52 level 2, 10

orobe
Condition quit raised at line 38 of fun.
source
return (2%**xpb + fun (b, i))s

stack
command_processor_
release_stack
unclaimed_siqgnal
real_sdh_,
return_to_ring_90_
fun quit
test
command_processor_
listen_

10 process_overseer_

1 real_init_admin_
use level 7
source

VO~ —

Seb(i) = fun (i, 1);
value s.num

5
position ¥i = I"§ source
do i =1 to s.num;
after: value i
continue

r 1252 1,375 16.394 354 1level 2, 10

release
r 1262 126 .922 19

test

— —— — —

QUIT
r 1252 3.069 .650 25 level 2, 12

MULTICS PROGRAMMERS’ MANUAL

release
r 1253 .092 .937 20

probe test
status test
Break after line 16.
status after 16
Break after line 16: value i
reset at 16
Break reset after line 16 of test.
position 34
source

ifb =20

then return (1)s

beforet stop
continue
r 1255 ,781 12.356 333

test
Stopped before line 34 of fun,
value b
1
where
Current line is line 34 of test.
Using level 2% fun.
Control at line 34 of fun.
value 1
]
c
Stopped before line 34 of fun,
stack 5
| break
2 fun
3 fun
4 test
5 command_processor_
value b
o
value bl-1]
0
value 1
1
symbol i
Attributes are: fixed binary(17,0) aligned
Declared ins fun.
use test
value i
0

parameter.

‘\

MULTICS PROGRAMMERSZ MANUAL

nrobe

Pame 21

97 > reset

98 Break reset before line 34 of test,
99 (quit)

100 QUIT

101 r 1307 4,870 64.788 1544 level 2, 18
102

103 > release

104 r 1307 .076 .992 31

Summary of Requests:?

after
before
call
continue
execute
goto
halt

if

let
mode
pause
position
reset
source
stack
status
step
symbol
use
value
where

while

pa

ps

SC

sk

st

sb

wh*

wl

MULTICS PROGRAMMERSZ MANUAL

Set A break after a statement.

Set a break before a statement.
Call an external procedure,

Return from probe,

Execute a Multics command.

Transfer to a statement.

Stop the program.

Execute commands 1f condition is
true.

Assign a value to a variable.

Turn brief messaae mode on or off,
Stop a proaram once.

Examine a specified statement or
locate a string in the program.
Delete one or more breaks.

Display source statements,

Trace the stack.

Display information about breaks.
Advance one statement and halt.
Display the attributes of a
variable.

Examine the block specified.
Display the value of a variable.
Display the value of probe
pointers.

Execute commands while condition is
true.

