Multics Technical Bulletin MTB- 104

To: Distribution
From: Steve Webber
Sublect: Known Segment Table (KST) Change Proposal

Date:s 06/18/74

Introduction

This MTB describes some modifications to the format of the
Known Segment Table (KST) that have been proposed over the. last
few months. The changes are primarily Intended to 1) allow
faster computation of effective access and 2) provide a more
convenient structuring for the pre-linking mechanism if and when
it is ever implemented.

Access Information in the KSTIE

The first proposed change is to extend the KST entry (KSTE)
to Include the followinag itemss

1) effective mode (R, E, W, RI, K2, R3)
2) date=time—-branch-modified (DTBM)

3) extended access (e.qg. ADROS for message segments or SMA
for directories)

The intent here is to calculate the effective mode much less
frequently (in the most common case only at initiate time). The
effective mode will be placed in the KSTE along with the time the
branch was last modified (which is an upper bound on the time the
access was last changed) at initiate time. Each time the
effective mode is wanted it can easily be obtained directly from
the KSTE unless the DITBM in the branch is later than the DTBM in
the KSTi which indicates that the mode should be recomputed. (In
the rest of this writeup the term 'Yeffective mode" 1is wused to
mean the actual bits olaced In the SDW, including the rinag
brackets. The mode returned by entries such as hcs_S$fs_get_mode,
often called effective mode, has the ring bracket comnutation
performed. This comnutation 1is very easy and for all nractical
nurposes the final needed mode exists in some form in the KSTE.)
If the branch has been modified, the effective mode 1is
recalculated and saved anew in the KSTE along with the upndated
value of DIBM.

Multics Project 1internal working documentation. Not to be
renroduced or distributed outside the Multics Project.

Inhere are several conseaquences of the above change but the
primary one is that mode comnutation will be much faster. One
interestina oproblem 1is that in order to look at ths DTBM in the
hranch it would annear to he necessary to lock the directory in
which the branch resides. (The current scheme requires the
directorv be locked during the entire mode comnutation.) This
is, In fact, not necessary if the followinag rules are followed:

1) the online salvaqer can not pgve the location of an
entry in a directory,

2) the DTEY in a branch should be changed bhefore an ACL
list is changed (for maximum effectiveness), and

3) Whenever the DIBYM Is to be updated in a branch it must
b2 g¢hanged, 1.e. a mechanism must be provided for
waitino until the time has passed, etc. A simple way
to insure this works without too much overhead is to
acdd one to the time value (if it didn’t change from the
last value) until the time goes, say, 250 milliseconds
in the future. Only then need we wait for the time to
actually ¥catch un' to our value.

dith these rules and a slight restructurinog of the entry
structure in a directory to nut the unique ID (UID) and the DIBM
in a sinale machine word pair, it 1is possible to <check the
validity of the DIBH very aquickly (i.e. with a CHPAQ machine
instruction). Note that there are enough unused bits in the KST:
to add this mechanism today without chanaging the size of a KST:E.

The effective mode saved in the KSTE would be the actual
bits returned oy access_mode and would contain any necessary
security controls factored in. The security controcls will have
the effect of onreventina read or write permission to the aiven
nrocess for the oiven seament. This information will be reflected
in the actual read and write bits saved in the mode of the KSTE.
Since the mode saved in the KSTE would contain rinag brackets, it
is a simole task to calculate the mode with respect to a aiven
validation level.

A further advantacge to nlacina the mode in the KSTE is that
a ring | initiate nrimitive could call a smecial supervisor entry
(through a rina 1 aate) to initiate message segments. This
eliminates the need for a Lit iIn the branch snecifying the
segment is a message searent (something proposed to solve a
problem with the security system interface to message segments).

A third component of the access to a segment, the extended
access, should alsc be nlaced in the KSTE for the same reasons
mentioned above. This makes message seagment orimitives, etc.
more efficient but will probably force the size of the KSTE to be
extended.

MT3- 104 raae 3

Note that the effective mode for directories consists of the
SHA bits and Rl and R2. The inclusion of this information in the
KSTE saves a good deal of access calculation done to determine if
a user has the right to perform some directory control overation.

Initiated Mode

The second proposed change is to extend the KSTE to include
"initiated mode" bits. The intent here is to allow a user to
initiate a seoment In sucn a way that he can not accidently
modify a segment that he has write nermission to. For examnle,
the source segment initiated by a compiler could probably be
initiated with R access only, thereby avoiding accidental
modification. Similarly, backup could use this feature to
nrotect user files.

The actual implementation would nrobably be simnly placina
the AND of the effective mode and the initiated mode in the SDW
at seogfault time. The standard initiate calls of today
(hcs_sinitiate, hcs_S$initiate_count and hcs_s$makeseqg) could be
comnatibly extended to allow specifying the initiated mode. For
hcs_$make_seqg, unused bits in the mode parameter could be used.
For the other entries unused bits in the conysw parameter could
be used. (These parameters are fixed bin (n) where n can safely
be extended.)

An important reason for the initiated mode fegature is that
it enables us to make better use of the cache hardware. The
design of the cache (software) implementation specifies that if a
seqgment 1is being used by more than one process and at least one
of the processes has write nermission (in the actual SDiW) then
the segment can not be cached. This means that references to a
segment by backupn (which generally has Rl access to files) will
cause that segment to be made uncacheable, needlessly. If backun
initiated segments to be dumped with R access only the SDN would
not (necessarily, see below) have the W bit on and hence not
force the seament to be uncached.

The issue of what to do if a seament 1is 1initiated with a
given mode and 1t has already been initiated with another mnode
can only be solved by the following rule:

The initiated mode can only be changed from
a state of less »privilege to a state of
areater privilene.

That is, it is not possiblie for one proagram to Y“turn off" an ¥
bit needed by some other nrooram In the nrocess. This rule is
necessary because seaments can be used by several senarate
subsystems within a nrocess that are workinag asvnchronously and
it should not be nossible for one subsystem to onrevent another
from operating Iin its normal manner (e.c. quits followed by work
followed by "start"). This rule cdoes not prevent ths mechanism

Page 4 HTiR—-104
from being useful in the large majority of cases.

Bit Count in XSTE

A third proposal 1is to extend the KSiz to include the bit
count of a segment. This 1is a trivial change but makes
status_s$mins and initiatesinitiate_count calls more efficient and
hence makes linkinag (as well as user-rinag programs) more
efficent. The disadvantaae hare is that the addition of the bit
count tTo the KSIkE would force an increase in the size of an
entry.

Llhe peference Name lable

A fourth oroposed change is to split the part of the KST
needed by segfault and the part of the KST needed by the linker
(and find_) into two senarate reqgions.. This is of interest both
for prelinking as well as removina the linker from ring 0. The
nroposed snlit would move all name management items (reference
names and initiated nathnames used by kstsrch on behalf of find_)
into A senarate region that could eventually be removed from the
sunervisor. This reagion, the Reference Name ‘Table (RNT), would
contain reference names, nathnames and hash tables to facilitate
searches. Associated with each name ist

1) the segment number,

2) a bit array sayina which rings the name 1is initiated
in,

2) a pointer to the (a) parent pathname,

4) a pointer to the next reference name (nathname) for the
segment, and

5) the reference -name itself (which may be a pathname).
the KSTE would retains

1) the uninue ID of the seament,

2) The DTBi4 of the seament,

3) the effective, initiated and extended access modes of
the segment, ‘

4) the inferilor count (for directories only),

5) flags (TMS, TUS, TPD, RSW, DINSW, USED, etc.),

B~ 10k : rage 5

6) the entry onointer (a vointer to the branch for the
segment In the narent directory) and

7) the bit count of the seagment.

Plz1 Declarations

ine Tollowlng PL/L declarations show the detalled nroposed
format of the KST and Rl (for the first implementation the RNT
will still be located in the same segment as the KST, but only to
conserve AST entries):
dcl | kste based (kstep) aligned,
uid bit (36),

dtbm bit (36),

N

entry_ptr ptr unaligned,

rsw bit (1) unalignedg,

dirsw bit (1) unaligned,

used bit (1) unalianed,
infent bit (9) unaligned,
bit_count bit (24) unaligned,

tms bit (1) unaligned,

tus bit (1) unaligned,

tpd bit (1) unaligned,

access unaligned,

3 (R, E, &) bit (1),

3 (R, R2, R3) bit (3
1
(

NN NN NN

)y
3 (Ir, I, IwW) bit (1),
hasn_table_relp bit (i#) unaligned,

N

2 extended_access bit (36)5

lhe eXtTended_access Tield wlil contaln ring brackets 1t
approoriate.

dcl | rnte based (rntep) atianed,

2 iring (O2/) bit (I} unaliagned,
2 seqgno tixed bin (19) unatigned,
2 pad bit (12) unaligned,

2 rel_nointers,
3 next_name pit (I8) unalianec,
3 parent bit (i8) unaltlianed,
3 hash_tnread bit (18) unaliane-d,

rage o UTH=— 104

3 null_name_count rixed bin (17) unalianed,

NG

len fixed Bin,

Z name char (1 refer (rnte.lenl)ls

—

del Kst_sea$ alioned ext,
Tirsit_seg I'ixed Din (19H),
last_seqg ftixed bin (1b),
entry_size ftixed bin 1init (0},
free_tnread obit (138),
uld_ht_size tixed bin,
uid_ht_relp pit (18),

rnt_relp bit (18),

ksta_relo bit (13),

[\

ulid_hash_table,
3 buckets (Qtuid_ht_size-=1)) bit (18) unaligned,

2 ksta (O:iN) aligned like Kkste,

Z2 rnt_header,

3 allocation_area_relp bit (18),
name_ht_relp pit (idg),
name_ht_size fTixed bin,
seano_ht_reln bit (18),
seaqno_ht_size fixed bin,
pad (3) fixed bin,

w wwkww

srules (U3/) bit (18),

name_hash_table,
4 buckets (O:name_ht_size—-1)) bit (18) unaligned,

(<

3‘seqno_hash_table,
4 buckets (Otseano_ht_size-1)) bit (13) unaligned,

3 allocation_area fixed bin (35)3s

Note that the hash table sizes will be variable and set hy a
value in the PIT for the process. Similarly, the value that
rnt_reln assumes will be variable so that it will be possible to
control p (again from the PIT) so that a 1K KST/RNI is possible
for small nrocesses.

The hashing scheme nronosed consists of a relatively small
hash table indexed by hash index generated from the item beling
hashed. The indexed cell of the hash table points to a list of

MTB=104 page 1

all entries in the KST or RNI with the same hash index. This
design allows the storage used by the hasnh function to start out
snmall and arow as more entires are added to the given table. If
the hash table 1is initially allocated with a reasonably
sufficient size (a PIT variable) there should be little loss in
efficiency, esnecially if a nage fault is avoided.

