
MULTICS TECHNICAL BULLETIN MTB- 093 

TOI Olstr lbut lon 

FROHI Gary C. Dixon 

OATEI June 20, 1974 

SUBJECT& The reductlon_compller and lex_strlng_ 

Th ls "TB descr 1 bes the reduct lo-. language out I 1 ned 1 n 
HTB-080, and prov ides wri teups for the reduct lon_comp 11 er command 
and for the lex_string_ subroutine. 

The reduction complier complies the BNF-ll~e statements of 
the reduction language lnto the syntaJC analyzer of a complier. 
BY coupling this syntax analyzer with tile lexlng f unctlons of 
lex_strlng_, and adding some simple-to-program action sl.i>routlnes 
which perform the semantic analysis fu"ction, it ls possible to 
write a moderately sophist 1 ca te d comp I 1 er- in one or two man days. 
The baslc portion of the reductlon_co11pller Itself was written ln 
two man days. The reduction statements defining the reduction 
language are attached to show how simply and clearly a complier 
language can be defined by reductions. 

You comments on poss 1 b le ext ens ions or modl f icat Ions of the 
reductlon_compller or of lex_string_ would be appreciated. 
Please mall your comments to GOixon.PDO on the HIT Multics. 

-------
Hui tlcs ProJect lnterna I working doc.Jmentat ion. Not to be 
reproduced or distributed outside the Multics ProJect. 



HTB- 093 --~~--~~--------

HPH SYSTEH PROGRAMMERS• SUPPLEMENT I reduction_compller I ·- .... -- ---· 
Special Command 

D 5/30 /74 

fillill reduct lon_compl ler, rdc 

Often in the course cf programming, it becomes necessarv to 
define 'a new language, and to write a complier, interpreter, or 
other form of translator for the language. Examples of such 
languages in the Multics svstem i~clude exec_com control 
language, runoff control language, the language used in the input 
segments for set_search_rules, the l~put language for the 
error _tab I e_compi I er, the binding contr-o I I anguage used ln bind 
segments, and of course the programming languages (Pl/I, Fortran, 
ALK, etc>. Some of these newly-developed languages will be used 
heavily, and thus deserve specially-designed translators which 
are optimized for that particular language. However-, many new 
I anguages are developed as part of tools wh lch wi 11 be used 
lnfreQuentty. For such languages, there is more need for simple 
translators which are easv to write, to understand and Maintain, 
and to extend than there ls a need for :>ptlmal, special-purpose 
translators. The reductlon_compller ;>rovldes a facll ltv for 
converting the svnta>e and semantics of a ne1111 language, as defined 
by a set of reductions, into a simple, standardized, easy to 

~ understand, and moderatel v ef flcient piece of PL/I co de. 

Us1ss 

reductlon_compiler segment_name -ctl_arg-

1) segment_name 

2) ct l_arg 

-long, -lg 

ls the path name of the translator source 
segment containing the reduct ions to be 
compiled. If the f ll'la I entry of this path 
name does not end 1111lth a sufUx of .rd, then 
.rd ls assumed. 

may be one of the fol lo1dng optional control 
arguments. 

al I error messages wl 11 include a detailed 
description of the error which has occurr-ed. 
The ·default ls to print t!le detailed 
descr iptl on the u~s t t 1 me an error occurs, 
and brief descript io'lS thereafter-. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywel I In format 1 on Systems Inc. 



I reductlon_compller 
HTB- 093 

MPH SYS TE~ PROGRAMMERS• SUPPLEMENT 

'--------~~~-------
Page 2 

-brief, -bf 

.Ila Icansl.iltoc 

a I I err or mes sage w 11 I inc I u de on I y a b r- i e f 
description of the error which !\as occurred. 
The default ls to print a detailed 
description the flrst t lme each error occurs, 
and br 1 ef descr lpt 1 O'lS thereafter • 

A translator source segment which ls to be co11pl1ed by the 
reductlon_compller Crdc) should be ol""ganlzed as shown in 
Figure 1. The translator source seg.111ent (hereinafter called 
translator.rd) contains• a copyright notice or other PL/I 
co11ments (optional>; a set of reduction state11ents and reduction 
attribute dec;laratlons the delimiter 1•++ opens the set of 
reductions, which ace closed by the dellntlter ++•1; a PL/I 
procedure statement for the translat~; PL/I declarations for 
the translator•s variables; a PL/I declaration for an 
error_control_table, containing the texf of error messages to be 
generated by the trans I at or C optional); a PL/I cal I statement 
invoking the lex_strlng_ subroutine to parse the translator•s 

, character string input into tokens; a PL/I cal I statement 
lnvok Ing the SE HANT IC_ANALYSIS subrout l ne which cont a ins the 
translation code generated by rdc; a PL/I return statement; one 
or more PL/ I f\Mlct ion subprograms which are relative SYr\ tax 
functions (optional); and one or mo~e PL/I subroutines which 
assign semantic meaning to the legal phrases in the input. Each 
of these parts of a translator ls described fJrther in the 
sections which follow. 

The translator ls compiled by a two-step process, as 
illustrated ln Figure 2. First, translator.rd ls co11plled by cdc 
to generate a PL/I source segment (hereinafter cal led 
translator.pl!>. translator.pl1 contalnsl a heading which 
ldentlfles the translator source segment, the version of cdc used 
to compl le that source segment into the PL/I segwent, and the 
date and time of compilation; followed by the contents of 
translator.rd; followed by the translation code generated by rdc 
fro• the reductions Cincludlng the SEHANTIC_ANALYSIS subroutl~e); 
and conclucHng with a PL/I end state11ent for the translator. 
translator.pit ls then complied by the PL/I complier to produce 
the translator obJect segment. 

Note that, since PL/I code ls l11serted ln translator.pit 
after the contents of translator.rd, ccre must be taken when 
coding translator.rd to insure that al I of the semant subroutines 
and relative syntax functions are ended correctly, and that .DR 

c Copyright 1974, Massachusetts Instl tute of Technology 
and Hone ywe I I In format l on Systems- Inc. 



HTB- 093 
HPH SYSTEH PROGRAMMERS• SUPPLEMENT I reduct1on_compiler I 

'----~~ ------· 
06/20/74 

Page 3 

end statement ls Included for the 11aln procedure of ttie 
translator. 

1• •••••••••••••••••••• I 
• c Copyr l ght • • • • 
•••••••••••••••••••• •1 

I copfrlght notice 
_I 

1•++ 
HAX_OEPTH 
BEGIN 

I I 
I I 

5 \ 

I 
I RETURN 

\ 
\ 
++•/ 

redJctlon statements and 
attr-ibute declarations 

translators procedure; 

dcl • • • • t I . . . . ' 
• . . . . ' I t r ai s I at or • s 

_I decl a rat 1 ons 

dcl error_control_table ••• ; 

call lex_strlng_Stex< •• > ;1 
Pthls_token = ••• ; I 
ca I I SE MA NT I c _AN AL y s Is ( ) ; I 
return; I 

fcna procedure returns 
( b 1 t< 1 > a I l gn e d > ; 

end fen; 

semanU proc < ••• >; 
••• 
end semant; 

calls to parse translator 
lnpJt into tokens, 
tra~slate these tokens, 
&. return 

r e I a t l ve s v n tax 
functions 

semantic 
subroutines 

F lgure 11 Organlzat lon of a Translator 

c Copyright 1974, Massachusetts Instl tute of Technology 
and Honeywel I Information Systems Inc. 



I reductlon_complter 

·------------~-------~ 
Page lt 

traosla!or•rg --·~----
1• ............... . 

• c Copyright • ....•.•......... , 
1•++ reductions ++•/ 

HTB• 093 
HPM SYSTEM PROGRAHHERS • SUP PLEHENT 

1. rdc 

-1~1os111oc&Qli -~-~ , ........... , 
1• heading •1 , .......... , 
, ............... . 

• c Copyr lght • 
••••••••••••••• •1 

1•++ reduct ions ++•/ 

translator I proc c ••• >; =======> translator• proc< ••• >; 

de I ••• , 
error_control_tabte ••• ; 

cal I lex_string_SI ex •• ; 
cal I SEHANTIC_ANALYSIS; 
return; 

fcnl proc returns 
(bltC1> aligned>; 

••• 
end fen; 

semant1 procc ••• ); 
• • • 

end semant; 

2. pl 1 
I<======= 
I 

-----' 

Figure 21 Two Steps of 
Compiling 
a Translator 

dcl ••• , 
error_control_table ••• ; 

call lex_st,.lng_Slex •• ; 
caf1 SEMANTIC_ANAL'tSIS; 
return; 

fen• proc returns 
<bl t (1 > a ti g n ed) ; 

• • • 
end fen; 

s e man t I pr oc < ••• ) ; 
• •• 

end semant; 

SEHANTIC_ANA LYSIS I 
pr oeedure <) ; 

••• 
end SE HANT IC_ANAL YSIS; 
ERROR& procedure(n); 

••• 
end ERROR; 
NECT_STMTI proc(); 

••• 
end NEXT_STl1T; 
PUSH• proe<I abel); 

••• 
end PUSH; 

end transl at or; 

---------~~------------

c Copyright 197~, Massachusetts Institute of Technology 
and Honeywel I Inf or-mat lon Systems Inc. 



HTB-093 
"PH SYSTEM PROGRAHHERs• SUPPLEMENT 

~~-~-------

I reductlon_co111piler I 
I_ _ ___ I 

Oo/20/74 
Page 5 

The translator receives a character string as its input. It 
must perform some transformatlon on t~is string, as defined by 
the syntax and semantics of the translation language. The 
translation begins by parsing the character string into a se~ies 
of tokens (1.e., character strings separated by the translation 
language•s delimiters). These tokens are the atoms of the 
translation language. 

The tex_strlng_ external subroutine can be called, as sho•n 
in Figure 5, to parse the input ::haracters into tokens. 
lex_strlng_ generates a chained I ist of token descriptors in an 
area provided by the transJator. Each descriptor describes one 
of the tokens in the input. The token descriptors are chained 
together (forward and backward) ln the order in l'lhich their 
respective tokens appear in the input string. The tr-anslator 
then has a chaln of tokens l'lhich it can process, as shown in 
Figure 3. 

-->I 1-->I 1--> I 1->I l•->I 1-->I 1--> I I- >I I -->I 
I l<--1 I<-- I I c--1 I <--1 I <--1 I<-- I I<• - I I <--1 

·--· 1_1 1 __ 1 I I I I I I I I 1_1 I 
I I I I I I I I I 
v v v v v v v v v 

Volume I 70092 • Hrl te • File 4 • 
' ' ' 

Figure 31 Input Tokens and their Ck!scr 1 pto rs. 

lex_strlng_ can optionally be invoked wlth a statement 
delimiter character string. lex_str-lng_ uses this delimiter to 
group the tokens into statements. It ca., a Is o create statement 
descriptors which poJ.nt to the first a.,d last token descriptors 
of each statement. Each token descriptor- ln turn points to J.ts 
respective statement descriptor. The statement descriptors are 
chained together (for-l'lard and backward) in the or-der ill which 
statements appear in the input strl1g. Thus, with statement 
delimiters, the input to the translator ls of the form shown in 
Figure '+• 

c Copyright 1974, Massachusetts Institute of Technology 
and Hone ywe I I Inf or mat 1 on Systems Inc. 



reductlon_compller 
HTB-093 

HPH SYSTEM PROGRAHHERS • SUP PLEHENT 

Page 6 

- -1------------> I I·-------------> I I<-------------1 I<----.---------- I 
--------..-1 ·--------- 1----... -----I I ---· --
1-------> l_I <-------1 l __ I <•• .. I 1---> 1_1 <··- - I 
II A A II IA II II A II 
I I _I I_ 11 I I I I I I I I I 
II I I II II II II I II 
ll ~ L il ll ll ll L il 

-->I 1-->I l·->I. 1-->I 1-->I 1-->I l·->I 1-->I 1-->I I 
I l<--1 l<••I l<••I l<--1 l<--1 l<--1 l<--1 l<--1 I 
I_ I I_ I I __ I I_ I I_ I I __ I I_ I I_ I I _ I 

I I I I I I I I I 
v v v v v v v v v 

Volume 1 70092 ; Wrl te ; Fl te ~ ; 

Figure 41 Tokens, Token Oescrlptors, and Statement Descriptors 

Figure 5 shows tex_strlng_ being invoked first to inltlalize 
the Jex_delims and lex_control_chars oreak deflnltlon strings, 
and then to parse the translator•s input character string 
(described by Pinput and Linput) into tokens. In this examples 
a double quote <"> character ls used to open and close Quoted 
strings; the characters 1• open comments, which are closed by 
•1; a semi-colon <;> is the statement del l11iter; and the colon 
(I), comma (,),- space < ), and all of the ASCII control 
characters lncludlng the PAO character Ol)erate as del !miters, of 
which the space character and all control characters except 
backspace are Ignored del lmUers which a .. e not retur"ed as tokens 
themselves, even though they separate tokens. Both token 
descriptors and statement descriptors are generated by 
lex_strlng_ In thls example. No descriptors are generated for 
the doub I e Quotes wh le h enc I ose Quoted str 1 ng s, a I though 
descriptors are generated for the Quoted strings themselves. 
Refer to the writeup on lex_strlng_ for more detalts on lts 
cal ling sequence, as well as for a complete declaration of token 
and statement descriptors. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywel I In format 1 on Systems Inc. 



HTB-093 ----~~·~-----~---

MPH SYSTEM PROGRAHHERS• SUPPLEMENT 
I 

I reduct lon_compU er I 
'----- ____ I 

breaks= substr(collate,1,33) II "'1,•• II 
substrCcollate,128,1>; 

06/20/74 
Page 7 

ignored_breaks = substr( co 11ate,1, 8> I I 
substr(collate,10,24) ti subst'"'(collate,128,1>; 

call 1ex_string_Slnit_lex_delims('11111 ", ........ , .. ,,,. .. , 11•/ 11 , 

.. ;", .. 10"b, breaks, lgnored_breaks, tex_del ims, 
lex_control_chars>; 

ca 11 I ex_s tr ing_S I ex ( P input, L input, Lin put_ ignore, P area, 
"100 .. b, ........ , ........ , 11/• 11 , •••1 11, .. ; .. , breaks, 
lgnored_breaks, lex_dellms, le1C_control_chars, 
Pflrst_stmt_descriptor, Pf lrst_token_descri pt or, code); 

Pthls_token = Pf lrst_token_descrlptor; 
call SEHANTIC_ANALYSIS(); 
return; 

Figure 51 Parsing Translator In~ut Into Tokens, 
Semantically Analyzing Those Tokens, 

and Returnhg 

The translation continues by analyzing the syntax of the 
input tokens to identify token phrases which are legal in the 
translation language. Legat token phrases must be assignea so111e 
se11antlc meaning, according to the specifications of the 
translation language, and illegal phrases must be diagnosed to 
the user. The syntax and semantics of the translatl on I ang1Jage 
are coded in a set of reduction state11ents. The reductions 
should specify the syntax of all posslDle seauences of input 
tokens, Identifying legal seQuences explicitly, and lltegal 
seQuences by default. 

The transl at ion of the input tokens ls carr led out by 
cal 11 ng SEHANTIC_ANAL YSI S, an internal procedure generated by 
rdc. SEHANTIC_ANALYSIS compares a se~uence of input tokens 
(called a token phrase) with the syntax ;peclficatlons defined ln 
the reductions. If a token phrase matches the syntax 
requirements of a given reduction, the act ion routines associated 
with the reduction are invoked to assign some semantic meaning to 
the token phrase. The translation ls co~plete when each of the 
input token phrasesa either has been designated as a legal token 
phrase, and has been assigned a semantic meaning; or has been 
diagnosed as an 11 legal phrase. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywet t Information Systems Inc. 



I 
I reductlon_compiler 
I 

H·TB-093 
HPH SYSTEM PROGRAHHERS • SUP PLEHENT 

Page 8 

The transtator.pl1 segment generated by rdc contains 
declarations for many variables used ~v SEHANTIC_ANALYSIS. In 
partlcutar, al I of the variables defining the structure of tokens 
and thelr descriptors are declared in the main procedure. 
Several of these varlabtes are declared In the main procedU....e of 
the translator so that they can be accessed by the translator•s 
subroutines, as well as by SEHANTIC_ANALYSIS. Two such variables 
are the pointers, Ptoken and Pthls_token, which are used In 
processing the Input tokens, as follows. 

At any point in the transl at lon process, some token phrase 
ls being compared with the reductions. Th ls phrase ls cat fed the 
"current" token phrase and its first token is called the 
•current" token. Pthls_token points to the descriptor of the 
•current.. token, and hence ldent If Ies the begin nlng of the 
"current" token phrase. Ptoken points to the descriptor of the 
token wl thin the .. current" token phrase which ls be lng c 011Pared 
with one of the syntax specifications of a reduction. Figure 6 
illustrates the use of these two pointers. 

Pthls_token Ptoken 
I I 

_l _l 
-->I 1-->I 1-->I 1-->I 1-->I l•->I 1-->I 1-·>I 1-->I I 

I l<--1 l<--1 l<--1 l<--1 l<--1 l<--1 l<--1 I <--1 I 
1_1 ,_, 1 __ 1 1_1 ·-· ·--' , __ , 1_1 1_1 

I I I I I I I I I 
v v v v v v v v v 

Volu11e 1 70092 ; Write ; Fl le 4 ; 

A 
I 
I 
I 

A 
I 

TOKEN BEING EXAHINEO 

"CURRENT .. TOKEN 

l_'"CURRENT .. TOKEN PHRASE_ I 

Figure 61 Pthls_token Identlfles ••current'' Token, 
Ptoken Identifies Toke!t Being Examined 

Note that the "current" ,token 
fixed number of tokens. Instead, the 
phrase varies to accommodate the 
specifications ln each reduction. Of 
remain to be translated than are 

:>hrase does .,ot contain a 
la n gth of the ••current .. 

nuwber of I an guage syntax 
c3urse, if fewer tokens 
-eciulred by the svntax 

c Copyright 1974, Massachusetts Instl tute of Technology 
and Honeywe 11 In format 1 on Systems Inc. 



HTB- 093 
HPH SYSTEM PROGRAHHERS• SUPPLEMENT I reduct io n_coit p ii er I 

I_ -- -- --~~' 

06/20171+ 
Page 9 

speclficatlons of a reduction, then the .. current .. token phrase 
cannot match that reduction. 

The input language for rdc contains two kinds of statements: 
reduction statements Cor simply redJctlons>, and attrioute 
declarations. Reduction statements specify the syntax of phrases 
ln the translation language, and they assign semantic meaning to 
these phrases. Attribute declaration> control the slze of 
flxed-length tables which the translator will use. If any 
attribute declarations are given, they lllUSt precede the reduction 
state111ents. 

The· sections below describe the redJctlon language. Section 
headers have been· numbered to prov lde easy cross-ref ere!'lces 
between sections. 

1 • Re<auc t 1 gn Sli.1.U.tDli 

A reduction ls a statement which contains four 
reduction label field; a syntax specification f letd; 
specification fletd; and a next-reduction field. It 
form a 

par tsl a 
an action 
has the 

optional labels I syntax I actions I next-reduction\ 

All of the 'fields must appear in eac'\ reduction, in the order 
glven above. These flelds are separated fro11 one another by a 
right stant (/)character, and the final fletd ls terminated by a 
left slant (\) statement del lmlter char3cter. The f lelds of the 
reduction statement may span any number of lines. A double Q.Jote 
c••) character ls used as the Quotl'\g dellmlter, and left 
parenthesis < o, right parenthesis ()), less than (<), greater 
than(>), left bracket([), right brac<et (]), and backspace 
characters del.ln•lt tokens within reductions, and are tokens 
themselves. Spaces, tabs, ne w-11 ne, new-page, and other ASCII 
control characters also delimlt tokens, but are ignored by rdc, 
unless they are enclosed in quotes. 

The left slant (\) character ls used as a 
delimiter for reductions to facilitate writing 
reductions for a language which uses the more common 
statement delimiter. 

statement 
a set of 
semi-co I on 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywel I Information Systems Inc. 



I 
I reduction_compller 

·~~--------------~-
Page 10 

2. Labe I fl&JJ;a 

HTB• 093 
MPH SVS TE~ PROGRAHHERS • SUP PLEHENT 

The label field of each reduction 11ay contain zero, one, or 
more labels by which the reduction may be referenced. A label ls 
a character string which begins with an alphabetic character, and 
contains 32 or fewer alphanumeric or underline (_) characters. 
Each of the- labels def lned ln any set of reduct ions must be 
uni Que. 

We will see (in Section 4> that labels can be used ln the 
next-reduct ion f lei d and in some act Ion specif lcat 1 ons to 
reference a particular reduction <In Section 11.1>. In addition, 
the first reduction must have a label of BEGIN to dlstlngulsh it 
from any attribute declarations which may precede the reductions. 

The syntax specification field of each reduction ldentlf les 
a token phrase by placing requirements on the tokens ln the 
••current" token phrase. The tokens ln the .. current .. phi"' ase are 
co11pared consecutively with corresponding specifications ln the 
syntax field. If each of the tokens :natches its corresponding 
syntax specl f lcat ion, then the token phrase matches the 
requirements of the reduction. It ls po;slble to classify all of 
the token phrases ln the Input by writing a set of reductions 
whose syntax fletds Identify all of the legal phrases ln t~e 

language to be translated, and by including one or more 
reductions .-hich match all other '1 llegal) token phr:.ses. 

There are three types of syntax s~eciflcatlonsz absolute 
syntax specifications; relative syntax functl.ons; and built-In 
syntax functions. They are discussed in the sections belo.-. 

Abso I ute syntax spec l f lcat ions reQu ire that their 
corresponding Input token eQual a partlcYlar character string. 
Absolute specifications are represented :>y their characte,. string 
value in the syntax specification fleld. If a set of reductions 
were written to translate the tokens in Figure 6, ••1101ume••, 11 1••, 
"; .. , "Write .. , and "File" would probably b~ identified by absolute 
syntax speclf icatlons. 

rdc•s dellmlter characters may :>e used in absolute 
speclflcatlons by enclosing the entire specification ln QUotes 
<e.g., "and/or", .. >udd>proJ>prog", ...... ", "<u, .. )", "<", ">",HI", 

... 

c Copyright 1971+, Massachusetts Institute of Technology 
and Honeywe 11 In for mat 1 on Systems Inc. 



HTB-093 
MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

--~-----~·---------~ I 
reduct lo n_com p 11 er I ·--------- ------· 

D 6/20 /7it 
Page 11 

.. \'., "( .. , -1··, or .. <1.e., .. <backspace> .. )). In additlon, the 
del 111iters which have special mea'llng wlthin the svntax 
speciflcatlon field of a reduction (!, <, and >) may be used as 
one-character absolute speclf lcatlons by underlining the 
characters. That ls, £, ~' and ~ are Interpreted by rdc as the 
single-character absolute syntax speclfl:atlons, /,<,and >. 

3.2 &elatlv1 Syot11 fynction~ 

Relative syntax functions are a second type of syntax 
specification. A relative syntax function reQuires that its 
corresponding input token meet some special requirements that are 
de f in e d by a P L /I f un c t ion • The ,.. e QIJ i r em en ts def in ed by s u c h 
functions may be Quite specific or very general in nature, 
according to the needs of the tra,,statlon language. The 
translator must supply the relative svntax functions which it 
needs to ldentl fy phrases in the trans I at ion language. Zero, 
one, or more PL/I func t Ions may be cre3 t ed and re fere!'l ced as 
relative svntax functions. Relative syntax functions are 
represented ln the syntax specification f lefd by enclosing the 
name of the function in angle brackets <e.g., <fcn_name». 

Typical relative syntax functions might be descr-ibed as 
fol I owsa <rel at! ve_pathname> requires that the token value be a 
relative path name, and calls expand_peth_ to associate an 
absolute path name as the semantic value of thls relative path 
na11e; <posit lve_integer> requir-es that the token value be a 
character string representation of a posl t lve integer-, and stores 
the numeric value of the integer in the token. Nvalue element of 
the token•s descriptor; <volume_ld> requires t"aat the token 
value be a 6-character tape volume identifier; and <time_of_day> 
requires that the token value be convertible to a time of the 
day. 

The calling sequence of a relative syntax function is shown 
belowl 

dcl fcn_namel entry returns (bit <U aligned>; 

token_matches = fcn_name<>; 

The function should return a value of .. 1 .. b if the input token 
matches the reQuirements of the functlo.,, and .. O .. b otherwise. 

c Copyright 1974, Massachusetts Instl tute of Technology 
and Honeywell Information Systems Inc. 



I 
I reduction_compiler 

·~~--~~~~--------
Page 12 

HTB- 093 
HPt1 SYSTEl1 PROGRAHHERS • SUP PLEHENT 

The function must be an internal procedUl"e of the translator. It 
can have any valld PL/I function name which ls 32 or fewer 
alphanu11eric or underline characters in length, which contains at 
least one lower-case alphabetic letter. 

By belng an Internal function of the translator, the 
relative syntax function can reference Its corresponding token in 
the .. current .. token phrase to see if that token meets the 
reQuJ.re11ents of the function. To cb this, the function 
references token_value, a variable declared by rdc in the main 
procedure of the translator. token_value ls based on the 
information ln the token•s descrlpto,.. This descriptor ls 
pointed to by Ptoken, another variable declared by rdc which ls 
set before the rel at Ive syntax function is ln11 oked. (See 
F lgure 6. > 

The relative syntax function may as;oclate a se~antic value 
with the token being exa•ined In one of two ways. It c3n set a 
variable which has been declared ln the main procedure of the 
translator. Or it can allocate a semantic value struct\re in the 
area used for token descriptors, and can then chain this 
structure onto the token descrlptor us lrtg the token. Psemant 
pointer. Refer .to the lex_strlng_ 1tr i teup for a complete 
declaration of the token descrlptor•s st~ucture. 

The thlrd type of syntax specifl:atlon ls the :>ullt-in 
syntax function. These are relative sy'\taic functions which have 
been pre-defined by rdc. Atthough several of the bui lt-ln syntax 
functlons make requirements on the input token string that would 
be difficult to i11ple11ent as relatllle syntax functions, 111ost 
built-in syntax functions were defined merely to facilitate the 
implementation of rdc, itself. Below ls a I 1st of the built-in 
syntax functions which have been defined. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honevw e I I In for mat ion Systems Inc. 



HTS- 093 ·~~---~~-------

MPH SYSTEM PROGRAHHERS• SUPPLEMENT I reduct lo n_com p 11 er I 

<no-token> 

<any-token> 

<na11e> 

<decimal~lnteger> 

<quoted-string> 

<BS> 

J ----' 

06/20/74 
Page 13 

requlres that there are no 11 ore tokens 
remaining in the .lnout token string. All of 
the tokens have bean translated, and the 
chain of token descriptors is exhausted. 

requires that its co.'"'respondlng token exist 
in the input token string. Any token value 
is accepted as part of the legal syntax of 
the language being· translated. 

requires that the input token be a 
string "hich begins "ith an 
character and contains 32 
al phanumerlc, underline (_), or 
CS> characters. 

character 
alphabetic 

or fewer 
dol I ar s 1 gn 

requires that the input token !:>e a val ld, 
optionally-signed decimal integer (as defined 
by the cv_dec_che ck_ subrou t1 ne) • The 
nu11eric value of the token ls stored as its 
semantic value in the token.Nvalue ele11ent of 
the token descriptor structure. 

requires that the te>ken.S.Quoted_string bit 
be turned on in the 1 n put token •s desc r lpt or• 
This blt ls turned on by lex_string_ if the 
token "as enc I osed "1th in quoting de I l ml t ers 
when lex_strlng_ parsed the translator input. 

requires that the Input token be a single 
backspace character. 

Before discussing the assignment of se11antic meaning to the 
token phrase which matches a reduction, the flo" of control 
between reductions wll I be described. 

c Copyright 1974, Massachusetts Instltute of Technology 
and Honeywe31 Information Systems Inc. 



I I 
I reductlon_complaer I 

HTB· 093 
HPM SYSTEP4 PROGRAHHERS • SUP PLEHENT 

'- -· 
Page 11t 

When the translator cal Is the SEHANTIC_ANALYSIS procedure, 
con trot passes to the reduc t1 on whose I a~ et 1 s BEGIN. The f 1 rs t 
of the "current .. token phrases ls compared Mith this beginning 
reduction and those which fol low until it matches the syntax 
requirements of one of the reductions. The action specifications 
of that reduction are then performed to assign semantic meaning 
to the ••current" token phrase, and to mai<e the next token phrase 
••current•. 

After performing the act lo" speci flea tlons, the 
next-reduction field of the matched reduction controls which 
reduction the new .. current•• token phrase ls compared wl th. The 
next-reduction field may be blank, or it 11ay contain a reduction 
label. If it is blank, then the reduction immediately following 
the matched reduction ls used in the ,ext comparison. If a 
reduction label is specified, then the reduction identified by 
that label ls used ln the next comparison. In e lther case, 
co11parlson of the new "current"" token phrase with reduct! ons 
continues until a matching reduction ls found. This process ls 
repeated until al I of the input tokens rave been translated. 

Each set of reductions must contain one or more reductions 
tir1hich use the <no-token> built-in syntax function to detect when 
all the input tokens have been translated. When such a 
<no-token> reduction ls invoked, its next-reduction field usual IY 
contains the RETURN keyword, instead of a reduction label, to 
specify that the flow of control should return to the caller of 
the SEHANTIC_ANALYSIS procedure. On return from 
SEHANTIC_ANALYSIS, the translation ls co~plete. 

Often if several <no-token> reductions appear in a set of 
reductions, a reduction label ls used ln their next-reduction 
f le Id (rather than a RETURN keyword) to branch to a f 1 na I 
<no-token> reduction ·which perfor11s epilogue actions a'\d then 
returns via a RETURN keyword. Having only one of the <no-token> 
reductlons perform the epilogue actions reduces the amount of 
translation code generated by rdc. 

<spec> II= llol ume I <vol ume-1 d>C, C'Urack 17track)] 
CRead I Wri tel ; . 
F 11 e <number> ; 
Records a <number> C, <number> l. •• ; 
Format I CFIFBIFBSIVIVBIVBSIU} ; 

Figure 71 BNF Syntax for a Tape Language 

c Copyright 1974, Massachusetts Instl tute of Technology 
and Honeywel I In format 1 on Systems Inc. 

• 
' 



HTB- 093 ---
MPH SYSTEH PROGRAHHERS • SUPPLEMENT reduct lo n_com p i1 er I 

__ I 

a 6120111+ 
Page 15 

BEGIN 
st mt 

I Volume I <vo I umP._ id> I I v o I \ 
I Read • I I s tmt \ ' I Write • I I s tmt \ ' I F lie <posl ti ve_ ln te ger> ;1 I s tmt \ 
I Records I I I numbers\ 
I Format a I I format \ 
I <any-token> I I s tmt \ 
I <no-token> I I RETURN \ 

vol 
I • I I s tmt. \ ' I 9track • I I s tmt \ ' ' I 7track • I I s tmt \ ' t 

I <any-token> I I s tmt \ 
I <no-token> I I RETURN \ 

numbers 
I <posltive_integer> I I punct \ 
I <any-token> I I punct \ 
I <no-token> I I ~ETURN \ 

punct 
I ' I I numbers\ 
I • I I st mt \ ' I <anv-token> I I numbers\ 
I <no-token> I I RETURN \ 

format 
I F • I I s tmt ' ' I FB • I I i tmt \ ' I FBS • I I s tmt \ t 

I v • I I s tmt \ ' I VB • I I s tmt ' ' I VBS • I I s tmt \ ' I u • I I s tmt \ ' I <any-token> I I s tmt \ 
I <no-token> I I RETURN \ 

Figure 81 Reductions for the Tape Language 
<Act 1 on Spec i f i ca tl on s Om l t te d) 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywel I In format ion Systems Inc. 



I 
I reduction_compller 

·----· 
Page 1& 

5.. Samol~ Redyetlgo~ i1 

MTB- 093 
HPH SYS TEl'1 PROGRAMMERS" SUP PLEHENT 

Figure 7 shows the Backus-Naur For'I <BNF) for the svntax of 
a language which identifies records to be read or written from a 
tape Hie on a particular volu111e, ushg a given record format .. 
Several examples below wlll employ this language to illustrate 
the use of reductlonso 

Figure 8 sho~s how the reduction fields described so far can 
be used to def !ne the svntax of the tape language shown in 
Figure 7. <poslt!ve_integer> and <volume_ld> are the relative 
syntax functions described in SectJ.3n 3.2. Note .that an 
<any-token> reduction ls included in each group of reductions, in 
addition to a <no-token> reduction, in order to detect errors 1n 
the use of the tape 8 anguage.. An <any-token> re duct i on (one 
containing only the <any-token> bullt-h syntax speclficatlon) 
matches any token phrase except null token phrases (those which 
match a <no-token> reduction) .. 

When a legal token phrase ls identified by the synta1< field 
of a reduction, the translator must assign some semantic meaning 
to that phrase,_ according to the specif !cations of the 
trans3atlon language. It does this by Invoking the semantic 
subroutines and other action routines which are specified ln the 
action field of the matching reduction. These subroutines are 
Invoked in the order of their appearance in the action flelde 

The translator ~ust supply semantic subroutines which assign 
some semant le mean lng to the matched token phrase. 5 eman t le 
subrout lnes can construct and f 111 1 n tab I es, bu ii d c ompi I er 
trees, generate obJect code, or do any other functions ...t\lch are 
required to perform the translation. l'dc supplies other action 
routines which can make another token ptv-ase the .. current" token 
phrase and perform other functions. These are described in 
Sec t 1 on s 7 , 9, an d 11 be I ow • 

Often the semantic subroutines must reference one of the 
tokens in the matching token phrase, or it must reference the 
semantic value structure attached to the descriptor of one of 
these tokens. Because it ls easiest for a semantic subroutine to 
reference the .. Current.. token, a s em3n t le sub rout ine ls oft en 
preceded In the act ion f 1 e Id b·y a I exl n g routine, an act 1 on 
rout lne suppl led by rdc which makes the token of interest to the 
semantic subroutine be the "current" token. Lexlng routlr\es are 

c Copyright 1971+, Massachusetts Inst! tute of Technology 
and Honeywell Information Systems Inc. 



MTB• 093 
HPH SYSTEM PROGRAHHERS• SUPPLEMENT 

described in Section 1. 

---·---~--

I reduct lo n_cont p 11 er I 

I ~-------' 
06/20/71.+ 

Page 17 

A semantic subroutine mav have anv calling sequence accepted 
by PL/I. If the subroutine would nornal IV be invoked bV a PL/I 
call statement of the forml 

call semantic_sub u, .. 1"b, .. able'', token_value, <ct+czn; 

then the se111ant le subrout .ine appears ln the act Ion s peel f !cat ion 
field ass 

semantlc_sub (1, .. 1"b, "able", token_value, Cc1+c2U 

A semantic subroutine llfhlch reQulres no input arguments would be 
invoked by a PL/I cal I statement of the for111 

call semant(); 

It can appear ln the action specification as• 

se11ant 

An example of a reduction containing semantic subroutines isl 

I File <posltlve_lnteger> ; I LEX set_file 
open_fJ. le<token.Nval ue, 11 r .. ) 
LE)( ( 2) I s tmt \ 

It ls often useful to define a sl~I e semantic suorout lne 
which performs a group of related functions. This semantic 
subroutine can then be invoked from many different reductions 
with a constant argument specifying whlcn of the functions should 
be performed. Since semantic subroutines may have~ different 
argument list each tl11e they appear in a reduction action field, 
it ls easy to create and use such a mul tl-funct ion semantic 
subroutine in a translator. 

c Copyright 1971.+, Massachusetts Institute of Technol ogv 
and Honeywell Information Systems Inc. 



I 
I reduction_compller 

·----------~~~------
Page 18 

HTB- 093 
HPM SYSTEM PROGRAHHERS • SUPPLEMENT 

Severa I facts must be cons ldered when pass lng var lab I es as 
the arguments to a semantic subroutine. First, the semantic 
subroutine ls actually called from withh the SEHANTIC_ANALYSIS 
procedure. Therefore, the subroutine itself and any variables 
passed to the subroutine 11ust be know" 1dthln tne scope of 
SEHANTIC_ANALYSIS. This can be accomplished by defining internal 
seaantic subroutines, and by declaring external subroutines and 
their variable arguments, within the 11ain procedure of the 
translator. <See Figure 2.> 

Second, care must be taken to avoid name confl lets between 
the variables declared within SEHANTIC_A~ALYSIS, and the semantic 
subroutines and their arguments. The variables declared by 
SE14ANTIC_ANALYSIS have al I been dechred with names fornied of 
upper-case letters, with a few except Ions described below. 
Therefore, name conflicts can general If be avoided by declaring 
names of translator variables and semantic subroutines which have 
one or more tower-case letters or digits. 

There are three types of exceptions to the upper-case naming 
convention used within SEHANTIC_ANALYSIS. These exceptions must 
be considered when naming the translator•s semantic subroutines 
and variables. First, SEHANTIC_ANAL'fSIS uses and has declared 
the fol lowing PL/I bui It-in functions I addr, max, nul 1, search, 
substr, and veri f Y• Second, SEHANT IC_A N ALY SIS us es and has 
dee I ared cv_dec_check_ to be the Huit i cs number col\ vers l on 
function documented in the HPH. Third, the variables and 
s true tures reQul red to reference tokens and the lr descriptors 
have been declared by rdc in the 11ain procedure of the 
translator. These variables and structures are referenced by 
SEMANTIC_ANALYSIS. They are described in the writeup on 
I ex_strlng_. 

6.3 Semantic sypcoY.t~tulS - BeferenclQ~ tb~ "C.Urrent" .Im1An 

If the semant le sub rout lne 1 s an lrl t erna I procedure, it can 
access the character string value of the "current.. to ken by 
referencing the token_value variable, Just as a relative syntax 
function does. It can also reference the token descriptor for 
the "current" token (via Ptoken>, and any semantic value 
structure attached to that descriptor. 

If the semantic subroutine ls an eJCternal proced\re, then 
token_value, Ptoken, or the semantic value of the .. current" token 

c Copyright 1971+, Hassachusetts Institute of Technology 
and Honeywel I In format 1 on Systems Inc. 



MTB- 093 
MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

--~--~--~---~ I 
I reduction_compller I 

·-·---------~--------· 
0 6/20 /74 

Page 19 

can be passed to the subroutine as an ar~ument. 

Tokens other than the •current•• token 11ay be examined from a 
se•antlc subroutine by obtaining a pointer to the descriptor for 
the desired token, ass lgnl ng th ls pointer to ? token, and 
referencing the token_val ue variable. Pointers to the desired 
token descriptor structures may be stored by ot!'ter semantic 
subroutines (for example, ln a toke" push down stack used to 
process polish strings). Alternatively, by using the forward and 
backward pointers ln the token desc-iptors, the semantic 
subroutine can obtain a pointer to the descriptor of a token 
which precedes or fol I ows the .. current• token by some knot111n 
number of tokens. For example, 

Ptoken = Pthis_token -> token.Pnext -> token.Pnext; 

causes the token_va I ue variable to i-e fer ence tn e 2nd token 
follo1dng the •current" token. Reme11ber that Pthls_token points 

,.... to the descriptor of· the •current .. token. 

Before invoking the subroutines in the action flelci of a 
reduction, SEHANTIC_ANALVSIS sets Ptoken equal to Pth.ls_tokene 
SEHANTIC_ANALYSIS does not use or depend upon the value of Ptoken 
unt'il the action field has been completely executed. It then 
resets Ptoken to equal Pthis_token. Therefore, Ptoken can be 
changed by one or more of the subroutines ln the action field, as 
long as the change has no ill effects on the subroutines which 
fol lotii. 

The best codlng practice ls for a semantic subroutine to 
assu11e that Ptoken ecauals Pthls_token. If the subroutine changes 
Ptoken, 1 t shou Id reset Ptoken to equal Pthls_ token before 
returning to Its caller. (Note that the lexlng routines 
described ln Section 7 below change the value of Pthis_token, and 
then set Ptoken equal to the new value of Pthls_token.) 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



I I 
I reductlon_compller t 
I I 

Page 20 

HTB· 093 
HPH SYSTE11 P~OGRAHHERS • SUP PLEHENT 

In many trans I at ors, the ma) or it v of the semantic 
subroutines per form very s 1 lllP I e operat l~s 11 ke turnl ng on a b 1 t 
or asslgnlng a particular value to a variable. To avoid having 
to create one-statement seman t le subr"' out 1 nes to perform these 
operations, the reduction language provides a semantic statement 
f ac 111 ty. 

A semantic statement ls a PL/I· statement <excluding the 
final semi-colon> Mhich appears, enclosed ln sauare brackets, in 
the action field of a reduction. For example 

[file_number = token.Nvalue + 21 

ls a se11ant le statement which assigns the numeric va I ue of the 
•current• token plus 2 to the variable called file_number. 
token.Nvalue cou Id have been set by the <posit ive_i nteger> 
relative syntax function described ln Section 3.2. Care must be 
taken, as described in Section 6.Z, to avoid naming conflicts 
between the varlables used in semantic statements and the 
variables declared bV the SEHANTIC_ANALYSIS procedure. Hore than 
one semantic statement may appear within the same pair of sQuare 
brackets by placing a semi-colon between each pair of statements. 
For example 

(if a> 1 then call ERROR(20>; else call ERROR<2Ul 

1. Actl~D f..lel~ - L..e.ltio..9 jQytlnes 

Besl des invoking se11ant le subroutines to attach mea nlng to 
the .. current .. token phrase, the action fie Id of a reduction must 
skip over that phrase so that the ne:ict token phrase can be 
processed by the translator. It does this by making Pthls_token 
(the pointer to the descriptor of the f lrst token in the 
•current• token phrase) point to the descriptor of the first 
token of the next token phrase. T"ls process of moving the 
pointer to the .. current•• token ls called lexlng. Three lexing 
action routines are provided to perfor11 this functions LE); 
LEX(Q); and NE~T_STHT. 

c Copyright 197,., Massachusetts Inst! tute of Technology 
and Honeywel I In format 1 on Systems Inc. 



HTB-093 
HPH SYSTEM PROGRAHHERS• SUPPLEHENT reduct lo n_co11 pll er I 

~~~~--~~~-~· 

7.1 ~exlog Routlo•& - LEX 

06/20/74 
Page 21 

The LE~ actlon routine makes Ptnls_token paint to the 
descr"lpto,.. of the token which i11mediatetv follows the ••cur"r"ent .. 
token. This effectlvetv 11akes the next token the new .. current" 
token. rdc compiles a LEX action routine Into a PL/I statement 
of the form• 

Ptoken, Pthls_token = Pthis_token •> token.Pnext; 

For positive n, the LEX<n• action N>utlne makes Pthls_token 
pol nt to the descr l ptor of the o th token whlc.t'l l med late I y 
fol tows the "current" token. This effectively 11akes the ne>et nth 
token the new .. current .. token. rdc co•plles a LEX(2) action 
routine into a PL/I statement of the form• 

Ptoken, Pthis_token = Pthls_token->token.Pnext-> token .Pnex.t; 

LEX<n> alse accepts negative values of ll• If o. ls negative, 
LEX(Q) makes Pthls_token point to the tolth token which ~c~a~ 
the .. current•• token. LEX<-1> action ls comp! leCI .lntol 

Ptoken, Pthls_token = Pthls_token->token.Plast; 

Note that care must be taken when l'frltlng the r-eductlons to 
Insure that al I tokens ~..LRpe.d .QlUU: to reach the new ••current .. 
token actually exist. If they do not exist, the code shown abo\le 
wll I atte•pt to reference through a null pointer. The token 
which wl I I beconte the new .. current .. token as the result of a 
LEX (Q) operat l on need not exl st, however. If the nth f o I low l ng 
<or lnlth preceding> token does not exist, Pthis_token and Ptoken 
are set to null pointers by the code shown above, indicating that 
the .. current .. token phrase ls a nu 11 token phrase ( 1. e., one 
containing no tokens and matching a <no-token> reduction> and 
that all of the input tokens have been translated. In every 
translation, the last phrase to be translated ls such a null 
phrase. 

c Copyr 1 ght 1971+, Hassachuse tts Instl tut e of Technology 
and Honeywel I In format 1 on Systems Inc. 



I reductlon_compller 

·----------~~--~~-
Page 2Z 

HTS- 093 
HPH SYS TE~ PROGIUHHE"5 • SUPPLEMENT 

7.3 ~exiot goytiQli - NEXT_STHT 

The NEXT_STMT actlon routlne makes the first token of the 
next statement (after the statement containing the "current .. 
token) the new ••current 0• token. This action routine can only be 
used when the translator requires lex_strlng_ to create state11ent 
descrlpters. It can be used to skiD over the remainder of a 
s tate11ent when an unrecoverab I e error has been detected l n that 
state11ento 

It ls semetlmes necessary for a se•antic subroutine to 
perform lexlng operations, especially to cerrect. an error. It 
can perferm a LEX or LE( Cn> operation lay executing a PL/I 
statement I lke the ones shown in Sect 1 ons 7 .1 and 7. 2. It can 
perfor-11 a NEXT_STHT operatien by cal 11.ttt the NEXT_STHT internal 
procedure which ls supplied by rdcl 

call NEXT_STMT(>; 

These operations gay only be perfor11ed oy semantic slbroutlnes 
which are internaa procedures, thereoy having access to the 
Ptoken anti Pthls_token variables and to the NEXt_sntT procedure, 
or by externa I procedures to which t nese var lab I es or the 
NEXT_SntT procedure have been passed as ar•gu11ents. 

a. Sa1a1e B1duc;tion~ ~ 

Figure 'J shoNS the reductions for tMr tape language, with 
the action fields '188ed in .. Note that only one of the 
<no-token> reductions performs epilogue functions, and that th!s 
reduct ion receives contro I from a I I other <no-token> reduc t1 ons. 
Note too that no semantic subroutines have been specified ln the 
action field of reductions which identify illegal Phrases 1n the 
input. Section 9 describes a general-i:uarpose error diagnosis 
se11antlc subroutine whlch can be used by any translator to infor11 
the user of errors in the input to the transl atoro 

c Copyright 197411 Massachusetts Inst! tute of Technoa ogy 
and Honeywe 11 In for mat 1 en Syste11s Inc .. 



HTS-093 
HPH SYSTEH PROGRAHHERs• SUPPLEMENT 

BEGIN 
st mt 

I Volume I <VO I Ullll.!_ld> • I ' 
I Read • I ' I Wrlte ; I 
I File <posltlve_lnteger> ;1 

I Records I I 
I Format I I 
I <any-token> I 
I <no-token> I 

vol 
I • I ' I 9track • I ' ' I , 7track • I ' I <any-token> I 
I <no•tOken> I 

numbers 
I <posltlve_lnteger> I 
I <any-token> I 
I <no-tOken> I 

punct 
I ' I 
I • I ' I <any-token> I 
I <no-tOken> I 

format 
I F • I ' I FB ; I 
I FBS ; I 
I v • I ' I VB ; I 
I ves • I ' I u • I ' I <any-token> I 
I <no-token> I 

end 
I <any-token> I 
I <no-token> I 

I r eductlo n_co111 p ii er I 
I ___ I 

06/20111.+ 
Page 23 

LEX< 2) C vo I u·me=t oken_ value J 
[ tr:ac k = 91 LEX I vol \ 
LEX<2> C mode= .. r•• J I s tmt \ 
L E)l. ( 2) C mode="w" J I s tmt \ 
LEX Cf ii e_no=to~ en.Nv a lue J 
LEX( 2) I s tmt \ 
L Elt ( Z) I numbers\ 
LEX<Z> I format \ 
NEXT _STHT I s tmt \ 
perfor11_lo I e na \ 

LEX I s tmt \ 
LEX(3) I s tmt \ 
C track = 71 LEX(3)/ s tmt \ 
NEXT STHT I s tmt \ 

I end \ 

set_record..:..no LEX I punct \ 
LEX I punct \ 

I end \ 

LEX I numbers\ 
LEI< I s tmt \ 
LEX I numbers\ 

I end \ 

LEX( 2) format (1) I s tmt \ 
LEXCZ> format(2) I s tmt \. 
LEX( 2) for mat< 3) I s tmt \ 
LEX( 2) format<'+> I s tmt \ 
LEX< 2) format< 5> I s tmt \ 
LEX(2) f ormat<6) I s tmt \ 
LEX( 2 > format(7) I s tmt \ 
NEXT _STHT I s tmt \ 

I \ 

epll ogue I R ETU~N \ 
epH o gue I RETU~N \ 

Flgure 91 Reductions for the Tape Language 
C Err or O lagnos tlc Act 1 ons Om It te d) 

c Copyright 1974, Hassachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



I 
I reduction_compiler 

·------------~~~----
Page 24 

HTS- 093 
MPH SYSTEM PROGRAHt1E~ • SUPPLEMENT 

9. Action f.1..ig - 1U.1gooslng ErrorJ 

Besides translating all legal token phrases In the input, 
most translators identify and report anv illegal phrases which 
may be present. An <any-token> re duet bn can be used at the end 
of a group of reductions to !dent lfY any non-nu I I token phrase 
t11hlch does not match one of the preceding reductions ln the 
group. A I so, spec 1 fl c re duct ions can be prov 1 ded to l dent 1 f v 
predictable errors, such as missing or iHegal punctuation, 
invalid keywords or names In otherwise legal statements, etc. In 
addition, semantic subroutines may i:ientlfy inconsistent or 
invalid Input as the translation progresses. 

When errors are l dent 1 f1 ed, the u set" must be not l fled of the 
type of error which has occurred, and the I ocat ion of the error 
in the input U f known). rdc prov let es two fac 11 iti es for 
printing error messages: the ERROR Internal subroutine; and the 
lex_error_ external procedure. 

9 .1 Errgr Rgut lne~ - ERROR (JlCCg[ Qum~sct 

The ERROR se111ant le subrout lne can be used by a transl a tor to 
print error messages. The procedure is invoked fro11 the act Ion 
f leld of a reduction byl 

ERROR(ecror D~~) 

or from one of the translator•s semantic subroutines byJ 

call ERROR(~.c.cgc_numbec•; 

In order to use the ERROR subroutine, the translator must 
supply an error_control_table. errgc_rw.11.tl.ie ls an Integer lndex 
lnto error_control_table, which ls an internal static array of 
structures declared by the translator ln the maln procedure of 
the translator. A declaration for a typical error_control_table 
ls sho11m below. 

c Copyright 1974, Massachusetts Inst! tute of Technology 
and Honeywel I Information Systems Inc. 



MTB-093 I 
HP" SYSTEH PROGRAHHERS• SUPPLEMENT I reduct·1on_co111pller I ·-- ---· 

06/20171+ 
Page 25 

dcl 1 error_control_table (2, al lg~ed Internal static, 
2 s ev er it v f ix e d b 1 n C 1 7 , u n a I i gn ed 1n1 t < 2 , 3 > , 
Z Soutput_stmt blt(1) unaligned lnlt ( .. O'"b, .. 1 .. b,, 
2 message charC100, 11arying lnit < ' 

''The reduction source seg;'ftent does not contain any 
valld reductions.", 

.. The reduction label •-a• ls invalid. This label 
has been Ignored.">, 

2 brlef_message char(21+) varying lnlt < 
.. No val Id.reductions ... , 
"Label •-a• invalid ... ); 

Each ele11ent of the error_control_table array ls a structure 
which describes one error message. T'\e structure cont a Ins a a 
severity level for the error;· a switch ~hlch specif !es whether 
the state•ent containing the ••current .. token phrase should be 
output after the error message; a long for11 of the error message 
text; and a brief form of the erl"or message text. The 
error_control_table must be a one-dhensional a,.ray, but Its 
upper bound may be declared to suit the !leeds of the translator. 

Note that statement descr 1 pt ors must be present in order t.o 
put the statement containing the "current'" token phrase into the 
error message. Therefore, the Soutput_stmt switct'I has no effect 
uni ess the trans I at or has requested that I ex_strl ng_ generate 
state111ent descriptors. <See the writeup on lex_strlng_ to learn 
how to reQuest statement descriptors.> 

The text of the error message ls an loa_ control string. 
Therefore, although the lengths of the message and brlef_message 
error message texts may be dee I ared acc~d Ing to the needs of the 
translator, these lengths must not be lo"ger than 256 characters. 
Up to three occurrences of the loa_ c<ntrol characters, -a, may 
appear in the message or brl ef_message character s tr lng. The 
value of the .. current 11 token will replace these control 
characters ln the printed error message. Any number of the 1oa_ 
control characters,--, -1, -1, -x, -R, ·a, and--, may appear ln 
the error message text. 

The choice of the tong message te>C t cu~ the br le f text for use 
in the error message ls controlled by the value of a variable, 
SERROR_CONTROL, which ls declared by rdc ln the main procedure of 
the translator. SERROR_CONTROL is a bit string of length 2, 
which ls inltlallzed with a value of ••oo"b. Table 1 shows how 
these two bits are Interpreted. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywe31 Information Systems Inc. 



I 
I reductlon_compiler 

MTB- 093 
HPM SYSTEM PROGRAMMERS• SUPPLEMENT 

·~--------~--~~~--
Page 26 

Tab I e 11 Int erpre tat 1 on of SERRO R_CONTROL Bl ts 

SERROR_CONTROL m~.i.Dln.g 

••oo"b the first tlrne a particular error occurs, the 
I ong mes sage teK t ls used in the error 
message; the short message teK t ls used ln 
any subseQuent occurr-ences of that error • 

.. 10 .. b the I ong message text is a I ways used in the 

.. 11"b 
error message. 
the I ong message text is always used in the 
error message. (equl va lent to .. 1 O'"b) 
the brief message te~t is always used in the 
error message. 

The error messages which are printed have the for 11 shown 
below I 

QC.tjji ICCQC number, SEVERITY $CYICiti I~ STATEMENT. OF LINE 0 
text gt ICCQC MeJSl9A 
SOURCE I 
st1 ! e11ent .c oota lo 1os_:~.\l:.I:Jl.D.1" tokco 2l:u:a~.1 

The value of ~.cs!1~ ls controlled by the severity level 
associated with the error message, as shown in Table 2. 

The statement and line numbers in the message are obtained 
from the token descriptor of the "curre'lt'" token or from the 
statement descriptor of the statement containing the "current .. 
token. 

'"IN STATEMENT m OF LINE o" only appears in the error message 
if statement descriptors have been provided by lex_strlng_. Cl ls 
the line number on whlch the statement contalnlng the .. current .. 
token beglns, and m ls a number whlch ldentlfles which statement 
ln I ine n was ln error, 1 f more that one 'itatement appears ln 
I ine Q• If I .ine o con ta ins only one statement, then 
"STATEMENT m OF .. ls omitted from the error message. 

If no statement descriptors are available, then 
.. STATEMENT JD OF.. ls 01111 tted from the message, and Cl ls the I ine 
number on which the '"current'" token appe3rs. If Pt!'lls_token ls 
nul I to i ndi cat e that the .. current" t:>k en phrase is nu I l , then 
~IN STATEMENT m OF LINE Q .. ls omitted altogether. 

c Copyright 197~, Massachusetts Instl tute of Technot ogy 
and Honeywel1 Information Systems Inc. 



HTB-093 
HPH SYSTEH PROGRAMMERS• SUPPLEMENT 

I 
I reduct lo n_co11 pll er I 
I ~---~I 

06/20/71+ 
Page 27 

Table 21 Relationship of Prefix to Error Severity 

~ oreflx 

D COHHENT The error message ls a comment. 
1 WARNING The error message wa-ns that a possible error 

has been detected. The trans I atio t'I w 111 
still proceed, however. 

2 ERROR The error message wa•ns that a probable error 
has been detected. However, the error is 
non-fatal and the translation wll I proceed. 

3 FATAL ERROR The error message wai-ns that a fatal error 
has been detected. Processing of the input 
wi 11 cont lnue to diagnose further errors, but 
no translation wlll 38 performed. 

TRANSLATOR ERROR 
The error message wa .. ns that an error has 
been detected ln the operation of the 
translator. No translation wil I be 
performed. 

If Soutput_s tmt ls off, then '"SOURCE" and the st ate11ent 
containing the "current" token phrase are omitted from the error 
message. If this statement has been printed in a prevloJs error 
message, then "SOURCE" and the statement are omitted from this 
error message. 

rdc declares two other variables in the main procedure of 
the translator which are used by the ERROR subroutine. 
SERROfLPRINTEO ls an array of bits, with one blt per message ln 
the arror_control_table. All bits In he array are initial IY 
turned off when the trans I at lon begl ns. Whenever an er-ror 
message ls printed, SERROR_PRINTEO(~rroc n.ll!Ul.A.C> ls turned on. 
This procedure allows ERROR to detect when subseQuent occurr-ences 
of the error occur, so that Sl:RROR._CONTROL · = .. 00 .. b can be 
l mp I eraented. 

c Copyrlght 1974, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



I reductlon_compiler 

·-----
Page 28 

HTB· 093 
MPH SYSTEP4 PROGRAHHERS • SUP PLEHENT 

The second variable declared by rdc in the main procedure of 
the translator ls HERROR_SEIJERITY. This is a fixed bln(17• 
Integer Mihlch ls 1nlt1al lzed to zeri>, and whlch ls used to 
maintain the severity of the hlghest•severlty error printed 
during the translation. The translator- may reference the value 
of th ls var lab le at the end of the transl atlon to retur-n this 
highest-severity to its caller, or to deter11lne when to abort the 
translation due to a fatal error. 

The ERROR semantic subroutine and declarations for 
SERROR_CONTROL, SERROR_PRINTEO, and MERROR_SEVERITY are 
automatically Included ln every translator which specifies this 
subroutine ln one or more of its reduction action fields. ERROR 
accesses the appropriate values ln the error_control_table, and 
passes these values and the pointers to the "current• token and 
its statement descriptor to the leK_error_ external procedure. 
lex_error_ invokes ioa_ to format the error message, and outputs 
the message on the error_output I/O stream. 

9.2 Error B.Qytina.s - lex_error_( ••• > 

Although the ERROR procedure descri3ed above ls very easy to 
use, the cost of its simpflcity c011es In its inability to 
generate highly-specific error messages containing several 
different variable information fields. ERROR only alloMS the 
character string value of the "'current" token to be included in 
the error message. 

When more flexible error messages are reQuired, the 
translator can cal I the lex_error_ pro::edure, itself, passing 
lex_error_ information from the error_control_table (or writing 
messages not included in the error_control_table), pointers to 
the statement descriptor for the statement containing the 
"current•• token phrase, and arguments to be substituted into the 
error message text, according to ioa_ contro I characters. Re fer 
to the writeup on the lex_error_ exter"al procedure for more 
information. 

Care should be taken 
error_control_table by value, 
wll I enable the PL/I complier 

to pass lex_error_ elements of the 
rat her than by reference. This 
to treat t~e error_control_table as 
can be ;tored ln the text of the 

in 1t s I lnkage section. 
be passed to I ex_err or_ by va I ue 
these elements by parentheses ln 

a constant structure Mihich 
translator, rather than 
error_control_table eleMents can 
by surrounding the references to 
the call to lex_error_. 

c Copyright 1974, Massachusetts Institute of Technology 
and HoneyweJ I In format 1 on Systems Inc. 



HTS-093 
HPM SYSTEH PROGRAHHERS• SUPPLEMENT 

BEGIN 
st mt 

vol 

I Volume I <volume_ld> 

I Read ; 
I Write ; 
I File <posltlve_lnteger> 

I Records 1 
I Format I 
I <any-token> 
I < no- t Ok en> 

I ; 
I , 9track ; 
I , 7track ; 
I <any-token> 
I <no-token> 

numbers 
I <posltlve_lnteger> 
I <any-token> 
I <no-taken> 

punct 

I ' 
I ; 
I <any-token> 
I <no-token> 

f or11a t 

end 

I F ; 
I FB ; 
I FBS ; 
I V ; 
I VB ; 
I VBS ; 
I U ; 
I <anv-token> 
I <no-token> 

I <any-token> 
I <no-token> 

~~------------

I reduction_compifer I 

I ~--~---' 
06/20/74 

Page 29 

I LEXC2) Cvolume=token_valuel 
[ track = 9 l LEX I v o I \ 

I LEXC2> Cmode='"r••1 I stmt \ 
I LEX(Z > [ mode='"w" J I s tmt \ 

;1 LEX Cflle_no=to"'en.Nvaluel 
L EXC 2) I st mt \ 

I LEX( 2) I numbers\ 
I LEXC2) I format \ 
I ERRJR(U NEXT_STHT/ stmt \ 
I per~or11_10 I end \ 

I LEX 
I LEX( 3) 

I C track = 
I ERROR< 7) 

I ERR:>R < 31 

I s tmt 
I s tmt 

71 LEXC3)/ stmt 
NEXT_STHT/ stmt 

I end 

\ 
\ 
\ 
\ 
\ 

I set_record_no LEX I punct \ 
I ERROR ( 2) LEX I p unct \ 
I ERR:> R ( 3) I end \ 

I LEX 
I LEX 
I E RRJ R ( 4 t LEX 
I ERRORC3> 

I numbers\ 
I s tmt \ 
I numbers\ 
I end \ 

I LEX ( 2 ) f or ma t ( U I s t mt \ 
I LEX( 2) f ormat(2) I s tmt \ 
I L EX ( 2 ) f or mat < 3) I s t mt \ 
I LEX(2) format(4) I stmt \ 
I L EX< 2 ) f or ma t ( 5 > I s t mt \ 
I L E )( ( 2 ) f or ma t ( 6) I s t mt \ 
I LEXC2J for11at<7> I stmt \ 
I ERRORCS) NEXT_STHT/ stmt \ 
I ERRJR(3) I end \ 

I ERR()R(o) epilogue I RETURN \ 
I epilogue I RETU~N \ 

Figure 101 Reductions for the Tape Langua~e 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywell Infor11atlon Systems Inc. 



I reductlon_compller 1 ·- _, 
HTB• 093 

MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

Page 30 

10. Sample RgdyctiQOi .tJ. 

Figure 10 shows the reductions for our tape language, 
Including error diagnostic calls to the ERROR subroutine. The 
declaration of the error_control_tabla to be used with these 
reductions ls shown ln Figure 11. 

def 1 error_control_table (7) lnte~nal static, 
2 severity fixed bin(17) un~lgned 

s ta t e men t • •• , 

nuaabers ... , 

lnlt (3, 2, 3, 2, J, 2, Z>. 
2 Soutput_stmt blt(l) unallg~ed 

lnlt <"l"b, "1"b, "O"b, "1"b, "1"b, "t•b, "i"b), 
2 message char(70> varying lnlt< 

.. An unknown statement has been encountered.••, 
n•-a• ls an lnvat ld record number .... , 
••rranslator input ends with an incomplete 

"•-a• ls lnvaHd punctuation in a list of record 

.. •-a• ls an invalid record format.", 
"Hore input was encountered· when the end of 

translator input was expected.", 
.. A bad track specification was giver\ in a Volume 

statentent. 9track has been assumed ... ), 
2 brlef_message charC28) varvlng lnlt( 

""Unknown statement."", 
••Ba d rec o rd n umber • - a• ... , 
'"Incomplete statement ... , 
'"Invalid punctuation •-a•.·•, 
"Invalid record format •-a•.", 
.. Too much input.'", 
.. Bad track in Volume ... >; 

Figure 111 error_control_table For Reductions in Flgu~e 10 

11. .IllA Reduction S!..i~h 

Often a language to be translated contains svntactic 
constructs whlch are slmilar ln form, out which differ in thelr 
use of keywords, types of values, etc. The BNF for O'\ e such 
language ls shown ln Figure 12. The language 3ccepts three 
different types of statements, each of which includes a I ist of 
values. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywe 11 Inf or mat l on Systems Inc. 



MTB- 093 ·--~----~---------
MPH SYSTEM PROGRAHHERS• SUPPLEMENT reduct1on_co11tpller I 

~~~~~·~-------~· 

<st11t> II= 

<attr> 11= 

Name I <name>[, <name> l ••• ; 
Attrlbute I <attr>C, <attr>J ••• ; 
Va I ue I <number>[, <'lumber> 1 ••• ; 

fixed f I oat I decl'lal I binary 

Figure 121 BNF for a Value Space Language 

0&/20/74 
Page 31 

The I ists in this language al I have the same syntax, and 
differ only in the keyword at the beginning of the statement and 
in the type of values included ln the I 1st. This suggests that 
the list punctuation for all three types of lists 11ight be 
handled by a common group of reductions if there were s<>11e "av to 
lnvoke the group of reductions as a subroutine which would return 
to so11e pre-defined reduct lon after p~ocessing the punctuation 
marks ln the list. 

rdc implements such a reduction subroutine facll lty by 
providing a reduction stack. This stack contaJ.ns the labels of 
the reductions which are to be returned to when a reduction 
sub rout lne has comp I e te d its srocess l ng. A ppr opr i ate 
next-reductJ.on key111ords are provided to indicate that the 
reduction identified by the label at the top of the reduction 
stack should be the next reduction. Action subroutines are 
pro"lded by rdc for pushing a reduction onto the stack, and later 
popping lt off the stack. These facilities are all desc~ibed in 
the next few sections. 

11.1 Action flel~ - PUSH(.L.ml~!> 

The PUSH action subroutine can be used ln the action field 
of a reduct lon to push the r4i1 duct lon l dell t 1 fled by JaR.e..J. onto the 
reduction stack. PUSH ls an lnter-nal procedure included 
auto11atlcally by rdc ln any translator which uses the PUSrt action 
routine. 

If pushing the reduction onto the stack would cause a stack 
overflow, then the PUSH subroutine writes a special severity 4 
error <error number 0) through lex_error_, and cal Is cu_Scl to 
Invoke a new level of the command processor. The start command 
cannot be l ssued a.f ter such a stack ov erf I ow has occurred, but 
the transOator maintenance personnel can perform debugging 
operations from the new level of the com.'land processor. 

c Copyright 197~, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



reduction_compiler 
HTB- 093 

HPH SYSTEl't PROGRAMMERS• SUP PLEHENT 

Page 3Z 

11.2 Attrlbyte ~AC.A.ti~ - HAX_OEPTH l \ 

Normally, enough storage ls declared <at 1 word per 
reduction) for 10 reductions to be i>UShed onto the reduction 
stack. The trans I a tor may in crease or ~ecre ase the amount of 
storage whlch is reserved to meet the needs of 1 ts reduct Ion 
subroutine strategy. The slze of the reduction stack can be set 
by us Ing the "AX_OEPTH at tr lb ute decl arat 1 on, which n as tn e form 1 

HAX_OEPTH D \ 

where n ls an integer, such that 0 < 3 < 
maximum number of reductions which can 
reduction stack at any given time. If 
declaration ls given, lt must appear before 
in the input to rdc. 

11.3 Action Eleld - POP 

1 o O O O, spec if v i ng the 
be pushed on to the 
a HAX_DEP TH at tribute 
any of he reductions 

The POP actlon routine can be used in the action field to 
pop the top reduction off of the reduction stack. POP ls a 
built-in action routine suppl led by rdc. If POP ls Invoked when 
there are no reductions on the stack, then no popping operation 
ls performed, and no error ls reported either. 

11.4 Next-R1dyctlon flSJ.a - STACK 

The STACK keyword may be used in the next-reduct Ion f leld of 
a reduction to transfer to the reduction on top of the reduction 
stack. If the reduction stack ls empty flfhen the STACK keyword ls 
specified, then a blank next-reductlon field ls assumed and the 
reduction following the one containing the STACK keyword is used 
ln the next comparison. 

11.5 N1xt-Beductlon f..li.la - STACK_POP 

Probably the most useful method of return lng from a 
reduction subroutine ls to transfer to the reduction on top of 
the reduction stack, whlle at the :oame time popping that 
reduction from the stack. This combination of the STACK and POP 
operations can be performed by specifying the STACK_POP keyword 
ln the next-reductlof'\ field of a reduction. As with STACK, if 
the reduction stack ls empty, then a blank next reduction field 
ls assumed and the reduction follo1dng the one containing 
STACK_POP is used in the next comparison. 

c Copyright 1974, Massachusetts Inst! tute of Technology 
and HoneyMel I In format Ion Systems Inc. 



~~~~-----------NTB- 093 1 · 
HPH SYSTEM PROGRAMMERS• SUPPLEMENT reduction_compUer I 

HAX_OEPTH 2 \ 
BEGIN 
st111t 

I Name a 
I At tr 1 but e I 
I Value a 
I <any-token> 
I <no-token> 

names 
I <name> 
I ; 
I ' <any-token> I 
I <no-token> 

at tr 
I fixed 
I f I oat 
I decimal 
I binary 
I ; 
I 
I 
I 

' <any-token> 
<no-token> 

values 

--~----------~~· 

I LEt<2> PUSH<stmt> 
I LEX ( 2) PUSH (st 11 t ) 
I LEX<2> PUSH <stmt> 
I ERROR(!) NEXT_ST~T 

I 

0 6/20 /74 
Page 33 

I names 
I attr 
I vat u es 
I stmt 
I RETJ RN 

\ 
\ 
\ 
\ 
\ 

I set_name 
I ERROR(2) 
I ERROR<2> 
I ERROR(.3) 
I ERROR('+) 

LEX PUSH(names) I punc t \ 
STACK_POP \ LEX I 

LEX I names 
punc t 
RETURN 

\ 
\ 
\ 

LEX ?USH(names) I 

I at tr (1 ) LEX PJ S H (a t t r) 
I attr(2) LEX PJSH<attr) 
I attrC3) LEX PJSH(attr) 
I attr(4) LEX PUSHCattr> 
I ERROR(2) LEX 
I ERROR<2> LEX 
I ERROR(5) LEX ?USH<attr) 
I ERROR('+) 

I 

I punc t \ 
I punc t \ 
I punct \ 
I punc t \ 
I STAC K_POP \ 
I attr \ 
I punc t \ 
I RETURN \ 

I <declmal_number> 

I ; 
I ' <any-token> I 
I <no-token> 

punct 
I ; 
I ' I <any-token> 
I <no-tOken> 

I 
I 
I 
I 
I 

set_num 
ERROR(2) 
ERROR(2) 
ERRORC6> 
ERROR('+) 

I LEX POP 
I LEX 

LEX ?USH(values)/ 
LEX I 
LEX I 
LEX ?USH(values)/ 

I 

punc t \ 
STAC K_PO P \ 
values \ 
punc t \ 
RETURN \ 

I ERROR(7) NEXT_STHT POP 
I ERROR<'+> 

I STAC K_PO P \ 
I STACK_POP \ 
I STACK_POP \ 
I RETURN \ 

Figure 131 Reductions for llalue Space Language 

c Copyright 1974, Massachusetts Inst! tute of Technology 
and Honeywell Information Systems Inc. 



reductlon~compller 

Page lit 

HTB- 093 
MPH SYS TEl1 PRO GRAHHERS • SUP PLEHENT 

The reductions for the value space language of Flg-.re 12 are 
shown in Figure 13. In these reductions, <number> ls a retatlve 
syntax function which converts a cha~acter-format number to 
floating deci•al, and stores the result in a semantic value 
structure attached to the number•s token descrlptor. 

The error messages generated by the reductlons ln Flgure 13 
11av be summarized as followsl ERROR<U severity 2, 
unrecognized statement; ERROR<Z> - seve ... 1 tv 2, uneJC pecte d •-a• 
punctuat 1 on mark in a name I 1st; ERROR( 3 J - severity 2, lnva 11 d 
name •-a• in a Name I lst; ERROR(4) severity 3, incomplete 
statement; ERROR(5) - severity 2, lnv3lld attrlbute •-a• in an 
Attribute I ist; ERROR(6) - severity 2, lnval ld number •-a• in a 
Value list; and ERROR(7) - severity 3, unexpected •-a• when a 
punctuation 11ark was expected in a name list. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywet I In format 1 on Systems Inc. 



MTB- 093 
MPH SYSTEH PROGRAHHERS • SUPPLEMENT I re duct io n_com p 11 er I ·---- ----' 

06/20/7'+ 
Page 35 

Table 31 EI ements of the Re duet l on Language 

Attrlput~ D.sc J .ac~! loos 

M·AX_DEPTH D. \ 

Redycf lgn S.t.i temanli 

labels I syntax I act lons I next-r- educ t 1 on \ 

BEGIN I I I \ 
I I I \ 

label 
label2 I I I \ 

I absolute spec I I \ 

I <re I at 1 ve_ fen> I I \ 
I I I \ 
I <no-token> I I \ 
I <any-token> I I \ 
I <name> I I \ 
I <decimal-integer> 

I I \ 
I <Quoted-str l ng >/ I \ 
I <BS> I I \ 

I I semant ( ••• > I \ 
I I C var=•• 1 ••3 J I \ 
I I I \ 
I I LEX I \ 
I I LEX (n) I \ 
I I NEXT_S THT I \ 
I I ERROR(n) I \ 
I I PUSH (I ab~ I ) I \ 
I I POP I \ 

I I I label \ 

I I I \ 
I I I RETURN \ 
I I I STACK \ 

I I I STACK_ POP \ 

c Copyright 1974, Massachusetts Instl tute of Technology 
and Honeywel I Inf or mat J. on Systems Inc. CE ND> 



MTB- 093 
HPM SYSTEH PROGRAHHERS• SUPPLEMENT 

!UJull lex_string_ 

------- I 
I I ex_st r lng_ I ·- --' 

Intern at I'l ter face 
Admlnlstrative/User Rlng 

0 6/1CJ/74 

lex_strlng_ provides a faclllty tor parslng an ASCII 
character string into tokens <character strings delimited by 
break characters) and statements (groups of tokens). It supports 
the parsing of comments and quoted strings. It parses an entire 
character string during one invocation, creating a chain of 
descriptors for the tokens and statements in an area. The cost 
per token of lex_string_ is significantly lower than that of 
parse_tlle_ because the overhead of cal ting parse_fll e_ to obtaln 
each token ls eliminated. It ls reco11mended for translators 
which deal with moderate to large amounts of input. 

The descrl ptors generated when lex_strlng_ parses a 
character string can be used as lnput to translators generated by 
the reduction_compller command, as wel I as in other applications. 
In addition, the information in the statement and token 
descrlptors can be used ln error messages printed by the 
lex_error_ facility. 

Refer to the wrlteups for the reductlon_compiler and 
I ex_ error_ for de tall s on the use o t these fac l t1 ti es. 

Eot~I lex_string_Slnlt_lex_delims 

This entry constructs two charactel" strings from the set of 
break characters and comment, quoting, and statement dellmltersl 
one string contains the first character of every delimiter or 
break character defined by the language to be parsed; the second 
s tr lng cont alns a character of control ln for mat lo n for each 
character in the first string. These t~o character strings form 
the break tables which lex_string_ uses to parse an input string. 
It ls intended that these two (delimiter and control) character 
strings be internal static variables of the program which calls 
J ex_s tr lng_, and that they be inl t 1a11 zed only once Per Process• 
They can then be used in successive calls to lex_str lng_S I ex, as 
described below. 

c Copyrl ght 197~, Hassachuse tts Institute of Technol ogy 
and Hone ywe I I lnfor mat 1 on Systems Inc. 



I 
' lex_strlng_ 
I 

Page 2 

Usa514 

MTB- 093 
HPM SYS TEl1 PROGRAMMERS• SUP PLEHENT 

declare tex_string_:ilnlt_le><_dellms entry (char(•), char(•'), 
char(•), char<•>, char(•), blt(•), char(•) varying aligned, 
char<•> varying aligned, char<•> varying aligned, char(•) varying 
a Ii gned>; 

call lex_strlng_Slnit_le><_dellms (quote_open, Quote_close, 
co11111ent_open, comment_close, statement_del Im, Slnlt, break_chars, 
lgnored_break_chars, lex_dellms, lex_control_chars>; 

1) Quote_open 

2) Quote_close 

is the character string delimiter which ls to 
Indicate the beginning <or opening) of a 
quoted string. It may be up to four 
characters in length. If 1t ls a null 
character string, than ~uoted strings are not 
supported during t~e parsing of a character 
string. <Input> 

ls the character string delimiter which ls to 
lndlcate the ending <or closing) of a Quoted 
string. It may be the same character string 
as quote_open, and may be u~ to tour 
characters ln length. <Input) 

3) comment_open is the character string delimiter which ls to 
indicate the opening of a comment. It may be 
up to four characters ln length. If lt ls a 
nut I character strJ.ng, then comments are not 
supported during t~e parsing of a character 
string. <Input> 

4) comment_close ls the character string del lmJ.ter which ls to 
Indicate the c I osl ng of a comment. It may be 
the same character string as comment_open, 
an d ma y be up to f:> u r c h a r act er s in I en gt h • 
(Input> 

5) statement_dellm is the character string deHmlter which ls to 
Indicate the closing of a statement. It may 
be up to four characters in length. If 1t ls 
a nul I character str-lng, then statements are 
not delimited durhg the parsing of a 
character string. <Input> 

c Copyright 1974, Massachusetts Institute of Technology 
and Hone ywe I I Inf or mat ion Sy st ems Inc. 



MTB- 093 
MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

I I 
I I ex_string_ I 

6) Slnlt 

'--------· 
0 6/20 /74 

Page 3 

ls a bit string whlcll controls the creation 
of statement descrlpto,..s, and the c,..eatlon of 
token descriptors fo,.. Quoting delimiters. 
T he b 1 t s tr 1 n g con s ls t s o f t w o b 1t s 1 n t h e 
order listed below. (Input> 

Ssuppress_quotlng_dellms 
ls 11 1•1 b if token descriptors for the quote 
opening and closing delimiters of a quoted 
string are to ba suppressed. A token 
descriptor is stll I created for the Quoted 
string itself, and the quoted_string switch 
ln this descriptor ls turned on. If 
Ssuppress_quo t lng_del 1 ms 1 s .. O"b, then token 
descriptors are returned for the Quote 
o Pen 1 n g and c I o s 1 ng de I 1 m 1 t e rs , as we I I as 
for the quoted string. 

Ssuppress_stmt_dellms 

7) break_chars 

ls "1"b lf the t3ken descriptor for a 
statement del lmlter ls to be suppressed. The 
end_of_stmt switch ln the descriptor of the 
token which precedes the statement delimiter 
is turned on, instead. If 
Ssuppress_stmt_del ims ls ••o .. b, hen a token 
descr lptor ls returned for a statement 
delimiter, and the end_of_stmt switch In this 
descriptor ls turned on. 

ls a character string containing al I of the 
characters which aay be used to delimit 
tokens. The string may include characters 
used also in the ~uoting, comment, or 
statement delimiters, and should Include any 
ASCII control char!tc t ers which are to be 
treated as del lmiteri. (Input> 

8) lgnored_break_chars 
ls a character string containing alJ of the 
break_chars which :way be .used to del 1 ml t 
tokens, but whl ch are not tokens them set v es. 
No token descrlpto·s are created for these 
characters. <Input) 

c Copyright 1971+, Hassachusetts Instltute of Technology 
and Honeywell Information Systems Inc. 



I 
I I ex_str Ing_ 

'---------
Page I+ 

CJ) lex_delims 

MTB- 093 
HPl1 SYSTE11 PROGRAt1t1ERS • SUP PLEHENT 

ls an output character string con talnlng al I 
of the delimiters Which lex_strlng_ will use 
to parse an input str Ing. This str Ing ls 
c on st r u ct e d by t he h l t _I e x_ de I 1 m s en t r y f r o 11 

the preceding argu1ents. It must be I ong 
enough to contain al I of the break_chars, 
pl us the first character of the QUote_open 
de I i m i t er , the co "'men t _ o pen de I i m it e r , an d 
t h e s ta t e men t _de I l1t de I i m 1 t er , p I us 3 0 
additional characteri. This length wl I I not 
exceed 128 characters, the number of 
characters ln the ASCII character set. 
(Output) 

10) t ex_contro t_chars 
ls an output character string containing one 
character of control information for each 
character in lex_detlms·. This string is also 
constructed by hlt_lex_delltns from the 
preceding arguments. It must be as tong as 
I ex_del ims. <Output> 

~01 lex_strlng_stex 

This entry parses an input st"'lng, accord Ing to the 
del imlters, break characters, and control information given as 
its arguments. The input string cortslsts of two parts• the 
first part ls a set of characters which 3re to be ig,ored by the 
parser, except for the counting of I hes; the second part are 
the characters to be parsed. It ls neceisary to count lines in 
the part which ls otherwise ignored so that accurate line numbers 
can be stored in the token and statement descriptors for the 
parsed sect ion of the s tr lng. 

c Copyright 1974, Hassachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



HTB-093 -------
MPM SYSTEM PROGRAHHERS• SUPPLEMENT 

I 
I I ex_st r Ing_ I 
1 _______ 1 

a &120114 
Page 5 

declare lex_strlng_S~ex entry (ptr, flxea bln<21), fixed 
bln<2U, ptr, bit(•), char('•'), char-<•>, char(•), char<•>, 
charC•», char(•) varying al lgned, ch:tr c•t varying at lgned, 
char(•) varying aligned, char<•> varying aligned, ptr, ptr-, fixed 
binC35JJ; 

call lex_string_Slex entry CPinput, Llnput, Llgnored_lnput, 
Parea, Slex, Quote_open, ceuote_close, comment_open, 
comment_close, statement_dellm, break_chars, ignored_break_chars, 
lex_de4ims, lex_controt_chars, Pflrst_stmt_desc, 
Pfirst_token_desc, code); 

1) P lnput 

2> Llnput 

3) Lignored_lnput 

4) Parea 

is a pointer to the string to be parsed. 
<Input> 

ls the length (ln characters) of the second 
part of the 1 npu t st r ln g, the part which is 
actua 11 y to be parsed. <Input> 

is the length <in ch:1racters> of the f lrst 
part of the input string, the part which ls 
ignored except for line counting. This 
length may be O if none of the 1.,put 
characters are to be ignored. <Input> 

ls a pointer to an area formatted by the 
area_ subroutine. Un put> 

5) Slex ls a bit string whic" controls the creation 
of statement and connent descriptors, and the 
handl Ing of doubled ~uotes within a Quoted 
string. The bit stf"ing consists of three 
bits in the order listed below. <Input> 

Sstatement_desc ls .. 1 •• b 1 f statement descriptors are to be 
created along with the token descriptors. If 
Sstatement_desc ls .. 0 .. 1:1, or if the statement 
del l11lter ls a nul I character stf" lng, then no 
statement descriptors are created. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



I 
t I ex_str Ing_ 

'-------
Page & 

Sco .. ment_desc 

MTB-093 
HPH SYS TE" PROGRAMMERS• SUPPLEMENT 

ls '"1'"b 1 f comment descriptors are to be 
created for any comnents which appear in the 
input string. If Scomment_desc is ••o .. b, if 
comment_open is a rlU I a character str lng, or 
if no statement descriptors are being 
created, then no comment descriptors are 
created. 

Sretaln_doubled_quotes 
is .. 1'"b if doubled Quote_close del lmlters 
w h 1 ch a pp ear w 1 th 1 n 3 Quo t e ct st r i n g a r e to b e 
retained. If Sretairl_doub I ed_Quo tes is 11 0 .. b, 
then a Quoted stl"'lng containing doubled 
quote_ctose delimiters is copied into the 
area, and the doubled Quote_close are changed 
to single quote_close delimiters. 

SeQuate_comment_close_stmt_dellm 

& ) - 12) 

13) lex_dellms 

ls .. 1 .. b if the comment_close and 
statement_dellm chal"'acter strings are the 
same, and 1 f the ct os Ing of a c om11en t ls to 
be treated as the e"ldlng of tne statement 
containing the comment. It could be used 
when pars lng I lne-or i ent e d I ang uages which 
have only one statement per tlne and one 
comment per statement. 

are as above. C In put) 

ls the character >trlng 
lex_string_Sinit_lex_dellms. 

inlt latlzed 
<Input) 

by 

14> tex_control_chars 

15) Pf lrst_stmt_desc 

ls the character string 
lex_strlng_Slnlt_lex_dellms. 

i ni t i a I i zed 
Un put) 

by 

is a pointer to the first in the 
statement descriptors. This 
pointer on return lf no statement 
have been created. C Output> 

ch a in of 
ls a null 
descriptors 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywe I I In format 1 on Systems Inc. 



HTB-093 -------
MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

I 
I I ex_string_ I 1 ________ 1 

0 6/20/71+ 
Page 7 

1&, Pf irst_token_desc 

17) code 

0 

ls a pointer to the first in trle chain of 
token descriptors. This is a nut I pointer on 
return l f no tokeni were found In the 1np\At 
string. (Output) 

is one of the fol I owing status codes. 

the parsl ng was completed success full v. 

error_table_Szero_length_seg 
no tokens were found 1 n the input string. 

error_table_Sno_stmt_dellm 
the input string did not end with a statement 
delimiter, when statement delimiters were 
used in the parsing. 

error_table_Sunbalance~_Quotes 
the input string ended with a Quoted str-lng 
which was not termi'lated by a quote_ct ose 
de I lm 1 t er. 

Any character may be used In the Quoting, comment, and 
statement delimiter character strings, hcluding suet\ characters 
as new line and the space character. 

A quoted string ls defined in the PL/I sense, as a string of 
characters which ls treated as a single token, even though some 
of the characters mav be delimiters or break characters. The 
string must begin with a quote_open delimiter, and must end with 
a cauote_close del lmlter. Two consecut Ive quote_close det intlters 
may be used to represent a Quote_close delimiter within the 
quoted string. lex_string_Slex provides the option of retai~ing 
anv doubled Quote_close del lmlters ln the Quoted strl ng token, or 
of copying the Quoted string Into the area, changing double 
Quote_close to single quote_close delimiters, and treating the 
modified copy as the Quoted string toke~. Switches ln the token 
descriptor of a Quoted string are turned onl to lndlcate that 
the token was originally a Quoted strlng; to indicate whether 
any Quote_close delimiters appear within the Quoted itrlng; and 
to lndlcate whether doubled quote_close delimiters have been 
retained in the token. 

c Copvrlght 1974, Massachusetts Inst! tute of Technology 
and Honeywe I I Informat 1 on Systems Inc. 



I I ex_str Ing_ 
HTB-093 

HPM SYS TE1'1 PROGRAMME RS• SUPPLEMENT 

'---------
Page 8 

Statements are def lned as groupi of tokens wh1ch are 
t er ml nated by a statement de I im 1 t er t O-< en. I ex_s tr ing_S I ex can 
optionally return a token descriptor for the statement delimiter 
or it can suppress the statement dell'nlter•s toke'\ descriptor. 
It always turns on the end_of_stmt switch in the final token 
descriptor of each statement, even if the statement delimiter•s 
token descriptor has been suppressed. Also, it can optionally 
return a statement descriptor which points to the descriptors for 
the first and last tokens of a statement, contains a pointer to 
and the length of the statement, and describes various other 
characteristics of the statement. These descriptors are 
described In the next section. 

Comments are defined in the PL/I iense, as a string of 
characters l"lhlch begin with a comment_open delimiter, and l"lhlch 
end w 1th a comment _close de 11 ml ter. C om11en ts wh lch a pp ear ln the 
input string act as breaks between token>. lex_string_SI ex can 
optionally create descriptors for each comment which appears in a 
statement. These descriptors are chained off of the statement 
descriptor for that statement. Switches are set in each comment 
descrlptor of a given statement to lndlcate whethe,. the comment 
appears before any of the tokens in that statement, and whether 
any tokens Intervene between this comment and any previous 
comments in that statement. 

lex_string_ uses the smart_alloc_ subroutine to perform 
at I ocatlons in the PL/I area. When smart _all oc_ signals the area 
condition, it passes an information structure which describes the 
allocation which failed, and which can be used to cause the 
allocation to be reattempted in another area. Re fer to the 
writeup on smart_atloc_ for more details. 

If I ex_strlng_$ I ex were invoked to parse the input shown In 
Figure 1, using standard PL/I parsing canventions, then tokens 
and token descriptors created by lex_st ... lng_ would have the form 
shown in Figure 2. 

llotume& 70092; 
Write; 
File 4; 
t• END •/ 

t• Process 4th flle on the tape. 

Figure 11 Sample Input to lex_strlng_ 

c Copyright 1974, Has sac huse tt s Instl tut e of Technol ogy 
and Honeywel I In format 1 on Systems Inc. 

., 



HTB· 093 
HPM SVSTEH PROGRAMMERS• SUPPLEMENT 

-->I 1-->I 1--> I 1--> I 1-->I I - ->I 
1 1<--1 I <--1 I <--1 I <--1 I <--1 
l_I 1_1 I I I I I I I 

I I I I J I 
v v v v v v 

Volume I 70092 • Write • 
' ' 

Figure 21 Input Tokens and their 

I I ex_st ring_ I 

1_ ----' 

I·-> I 1-- >I 
I<-- I I<- - I 
I I I I 

I 
I/ 

File 

Oescr ipto rs 

I 
v 
4 

06/20/74 
Page 9 

I -->I 
I <-·I 
I I 

I 
v 

If statement descriptors were being created by lex_string_, then 
the output would have the form shown in Figure 3. 

1------------> I I--------------> I I 
I<------------ I I<-------------- I I 

---------1 1--------- I I --- - .. -----I I ---- --
1------->l~l<-------1 I I <-- - I 1---> 1_1 <----1 
I I A A I I I A I I I I A I I 
II -' '- I I I I I I I I I I 
II I I II I I I I I I I I 
u -1 1- il ll !.ll jll L ljl 

-->I 1-- >I 1--> I 1-- >I 1-->I I - ->I 1-- >I 1-- >I l -->I I 
I l<--1 I<-- I I <--1 l <--1 I <--1 I <--1 I<- - I I <--1 I ·-· '-' 1_1 1_1 '-' I I I I I 1_1 

I I I I t I I I I 
v v v v v v v v v 

Volume I 70092 • Write • F lie I+ • 
' ' ' 

Figure 31 Tokens, Token Descriptors, a'\d Statement Descriptors 

c Copyright 1971+, Massachusetts Institute of Technology 
and Honevwel I In format 1 on Systems Inc. 



I 
I I ex_str lng_ 

MTB-093 
MPM SYSTEM PROGRAMMERS• SUP PLEHENT 

'-------
Page 10 

Below ls a declaration for the token descriptor structure. 

declare 
1 token aligned based <Ptoken), 

2 group1 unaligned, 
3 version fixed bln(17), 
3 size fixed bln(17), 

2 Pnext ptr unal, 
2 Plast ptr unat, 
2 Pvalue ptr unal, 
Z L v a I ue fixed bin< 18> , 
2 Pstmt ptr unal, 
2 Psemant ptr unal , 
2 group2 unaligned, 

3 Itoken_ln_stmt fixed bin(17), 
3 llne_no fixed bln(17>, 
3 Nvalue flxed bln(35), 
3 s, 

I+ end_of_stmt bit(i), 
4 Quoted_strlng bltC1), 
I+ quotes_ln_strlng blt(i), 
4 quotes_doubted bitC1>, 
4 pad2 bit ( 32) , 

Ptoken ptr, 
token_value charCtoken.Lvalue> based Ctoken.Pvalue>; 

1) version 

2> size 

ls the version numbe,. of the struct\re. 
structure shown above ls version 1. 

ls the size of the structure, in words. 

The 

3) Pnext ls a pointer to the descriptor for the next 
token in the input. If th ls ls the S ast 
token descriptor, than the pointer is nul I. 

'+> Ptast 

5) Pvatue 

&> Lvalue 

1 s a pointer to the descrlpt or for the 
previous token ln he input. If this ls the 
first token descriptor, then the pointer ls 
nu I I. 

ls a pointer to the token character string. 

ls the length of the token character string, 
1 n characters. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



HTB-093 
HPH SYSTEH PROGRAHHERS• SUPPLEHENT I I e x_s t r in g _ I 

7J Pstmt 

8) Psemant 

9) Itoken_in_stmt 

10) I 1ne_no 

11> Nva I ue 

12) end_of_stmt 

13) Quoted_strlng 

14) quotes_ln_strlng 

,_ _ ____ I 

06/20/74 
Page 11 

is a pointer to the statement descriptor for 
the statement which contains this token. If 
statel'lent descriptors are not being created, 
then this pointer ls null. 

1 s a pointer a11 a 1 I ab I e f o r J s e by 
lex_string_•s cal lei-. It might be used to 
chain a structure def 1nlng the semantic value 
of the to ken to the token• s des er i ptor. 

ls the position of he token wlt'\ respect to 
the other tokens ln the statement containing 
this token. If no statement del !miters are 
being used ln the 3arslng, then this ls the 
posit ion of the tokel'\ Id th respect to a 11 
other tokens in the input. 

is the llne_no on which this token appears. 

ls a number available for- use 
lex_strlng_•s caller. It might oe set to 
nu mer i c v a I u e o f a t o ken wh 1 ch i s 
character string representation of 
integer. 

by 
the 
the 

an 

is .. 1"'b if this ls the last token of a 
statement. 

ls .. 1 .. b if this token appeared in the lnput 
as a quoted string. 

is .. 1 .. b ls Quote_:: I ose del lml ters appear 
within this Quoted string token. 

15) quotes_doubled is "1 .. b if quote_close delimiters which 
appear ln a Quoted string token are still 
represented by doubled quote_cl ose 
del lmlters, rather tnan having been converted 
to single quote_close delimiters. 

16) pad2 ls available for use by lex_strlng_•s caller. 

17> Ptoken is a pointer to a tOl<en descriptor. 

c Copyright 1971+, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



I 
I I e>e_str ing_ 

HTB•093 
HPH SYS TEl1 PROGRAMMERS• SUP PLEHENT 

·--------
Page 12 

18> token_value is the character string represent at Ion of the 
token described bf the token descriptor 
pointed to by Ptoken. 

Statement descriptors are declared by the structure shoMn below. 

dee I are 
1 stmt aligned based <Pstmt>, 

2 group1 unaligned, 
3 verslon fixed bln(17), 
3 size fixed blnC17>, 

2 Pnext ptr unal, 
2 Plast ptr unal, 
2 Pvalue ptr unal, 
2 Lvatue fixed bin (18>, 
Z Pf lrst_token ptr unal, 
Z Plast_token ptr unal, 
2 Pcomments ptr unal, 
Z Puser ptr una1, 
Z group2 unaligned, 

3 Ntokens fixed bln(17>, 
3 llne_no fixed bin(17), 
3 Istmt_in_llne fixed bln(17), 
3 semant_type fixed bln<17), 
3 s, 

4 error_in_stmt blt(1), 
4 output_ln_err_msg blt(1), 
·'+pad blt(34), 

Pstmt ptr, 
st11t_value char<stmt.Lvalue) based <st11t.Pvalue>; 

1 > version ls the version number- of this str-ucture. The 
structure declared aoove ls versl on 1. 

2 > size 

3) Pnext 

I+> Pl as t 

ls the size of this itructure, ln words. 

ls a pointer to the itatement descriptor 
the next stateme~t. If this ls 
descriptor for the last statement, then 
point er ls nu 1 I • 

ls a pointer to the 
previous statement. 
descr 1 p tor for the fl rs t 
pointer ls nul 1. 

descrlpt or for 
If this Is 
statement, then 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywe I I Information Systems Inc. 

for 
the 

this 

the 
the 
the 



MTS- 093 
MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

I I 
I I ex_st ring_ I 

5) Pvatue 

6) Lvalue 

7) Pf lrst_token 

8) Ptast_token 

9) Pcomments 

10) Puser 

11t Ntokens 

12) I lne_no 

13> semant_type 

11+) error_ln_stmt 

t ----· 

06/20/71+ 
Page 13 

is a polnter to the character st,.ing 
representation of the statement as It appears 
in the input, exclucHng any lead Ing new I lne 
characters or I ead ln~ comments. 

ls the length 
represenat ion 
characters. 

of 
of 

the 
the 

character str-lng 
statement, in 

ls a pointer to the des er 1 pt or of 
token In the stateme~t. 

the first 

is a pointer to the ~escrlptor of the I ast 
t o ken 1 n the s t ate me" t • 

ls a pointer to a chain of comment 
descriptors associated wlth this statement. 

ls a pointer ava.llable for use by 
I ex_str Ing_ •s cal I er. 

ls a count of the too< ens in this statement. 

ls the I lne number O'l which the f lrst token 
of th ls statement appears In the input. 

ls a number available for use by 
lex_strlng_•s cal lei-. It might be used to 
classify the stateme'lt by its semantic type. 

ls .. 1.'b if an er,.or has oc:urred while 
processing this statement. Th is switch ls 
never set by I ex_s trl'n g_, but it ls set by 
lex_error_ when a statement descriptor ls 
used to generate an error message. 

15> output_ln_err_msg 

16> pad 

1 s .. 1 .. b 1 f the st a t e rn en t has a I read y o e en 
output ln another error message. This switch 
ls referenced and s~t by lex_error_ to 
prevent a statement from being printed ln 
more than one error •essage. 

ls available for use by lex_strlng_•s caller. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



I 
I I ex_str-1ng_ 

HTB-093 
MPH SYSTEM PROGRAMMERS• SUPPLEMENT 

·--------
Page 14 

17> Pstmt ls a pointer to a statement descriptor. 

18) stmt_value ls the character >tring value of the 
s t a t em en t , as l t a p pe a rs in t he l n p u t , 
excluding any leadin~ ne"f line characters or 
I e ad l n g c om men t s. 

Co~ment descrlptors are declared as follows. 

declare 
1 ce•~ent aligned based <Pcomment>, 

2 group! unaligned, 
3 version fixed bin(17), 
3 size f lxed bln<17>, 

2 Pnext ptr unal, 
2 Plast ptr unal, 
2 Pvalue ptr unat, 
2 Lvalue fixed binl18), 
2 group2 unaligned, 

3 llne_no fixed bln(17>, 
3 s, 

4 before_stmt bit(!), 
4 contiguous bit<1>, 
4 pad bit(16), 

Pcomment ptr, 
co1111ent_value char(com111ent.Lvalue> t>ased <comment.Pva lue>; 

1> version 

2 > size 

3 > Pnext 

It> PI as t 

ls the version numbe .. of this structure. The 
structure declared a:>ove ls version 1. 

is the size of this structure, in words. 

i s a po in t er t o th e ti e s er 1 p t or fo r th e n ex t 
comment associated id th the statement 
containing this comment. If there are no 
mo re co mm en ts ass o c i a t e d w i t h t ha t st a t em e n t , 
then the pointer ls 'lU 11. 

' 
ls a pointer to the descrlpt or for the 
previous comment associated with the 
statement containing this comment. If this 
is the first comment associated wlth the 
statement, then the pointer ls nuu. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywel I Information Systems Inc. 



HTB-093 ------
MPH SYSTEM PROGRAHHERS• SUPPLEMENT 

I 
I I ex_st r Ing_ I 
I_ __I 

S> Pvalue 

&) Lvalue 

7) I ine_no 

8) before_stmt 

9> contiguous 

10) pad 

11) Pcomment 

12> comment_value 

06/20/7lt 
Page 15 

ls a pointer to the ::haracter str lng value of 
the comment string, ll.llitil as lt appears in 
the input, excludhg the comment_open and 
comment_close delimiters. 

ls the length of the character string value 
of the comment, in c~aracters. 

ls the line number on which the comment 
begins. 

ls "1"b lf the comment appears in 
statement before any tokens. 

lts 

ls .. 1"b l f no toke'\s appear between th ls 
comment and .the previous comment associated 
with this statement. 

,.l s av a l I a b I e f or u s e b v I ex_ s tr in g_ • s ca I I er • 

1 s a po 1 n te r to 
structure. 

a comment descriptor 

ls the character string value of a comment. 

The above declarations are avallable for incl us Ion ln ?L/I 
programs in lex_descriptors_.lncl .pl1. 

c Copyright 1974, Massachusetts Institute of Technology 
and Honeywell Information Systems Inc. 



42 1•++ 
4~ ~AX_OEPTH 20 \ 
44 
45 ~f.GTN I <no-token> 
46 I <any-token> 
47 4' attributes 
4q ' ACGIN 
50 I ~AX_QEPTH <declmal-lnteqer> .,. 
51 I <no-token> 
52 . I <any-token> 
53 
54 passi 
55 set_label I L 
56 I <name> 
57 I "\" 
5' I <no-token> 
5q I <~ny-token> 

60 
Fi 1 count 
62 
63 
flit 
65 
65 
67 pass2 
6' sklo_label 

I <1uoted-strlng> 
I l < R<; > _ 
I L 
I <any-token> 
f <no-token> 

69 label I L. 
70 
71 
7? 
7'3 
74 
75 tokens 
75 
77 
76 
rq 
M 
'31 

"~ 63 
64 
81j 
85 
H 8, 
69 
90 
Cit 
92 
<13 
q4 
q5 
% 

) 

I <name> 
I '"\" 
I <any-token> 
I «io-t oken> 

I <Quoted-string> 
I L <BS> 
I l 
I < <fl'>> 
I > <A'>> 
I { <AS> 
I 1 < oc; > 
I ( <f'lS> 
I I <OS> _ 
I .! no- token ?. L 
I .! no-token ~ <any-token> 

I .! any-token ?. 
I < na'Tle > 
I ~ decimal-integer ?. 
1 ..! as ?. 
I < ~uoted-strlng > 
I ~ <na~e> ?. -
I '"\" 
I <any-token> 
I <no-token> 

I ERR11R!1l 
I reductlons_lnlt 

I {Psave = Pthls_tokenl 
I LfX set_depth LEX!21 
I ERR'1R(t l 
I EORORC2) Ni:'.XT_STl'H 

I count_~eductlon LEX 
I set_laJel LEX 
I EORrJR(22) LEX 
I CPthls_token = Psavel reductlons_begl~ 
I ERRrJR!3 I LEX 

I count_token!ll LEX!1) 
I count_tokenl3l LEXC31 
I NEXT _ST MT 
I count_token(tl LEX 
I ERROR(;) 

I reductlon_begln LEX 
I LFX 
I LEX 
I LEX 
I 

I comolle_token<o> LEX 
I comol~e_tokenCOl LEX(3l 
I actlon_be1In LEX 
I co~olle_tok~n!Ol LEXC3l 
I co~olle_token!Ol LEX(3) 
I co~olle_token!Ol LEXC3> 
I comolle_token!Ol LEX!3l 
I comolle_token<o> LEXC3l 
I comolla_token(O) LEXC3l 
I comoile_token!l) actlon_begln LEXC4) 
I LfX(3) ERPOR!14l CobJ_red.Ilast(Nobl_r!d) = 01 

reduction_enj NEXT_ST~T 
I comoile_token!2l LEX(3l 
I comolle_token!3l LEX(31 
I comolle_token!ltl LEXIJI 
I complle_token(5) LEX!31 
I comolle_token!&I LEXl3l 
I LEX co11pl I e_token !71 LEX! z> 
I ERR'JR!22l LEX 
I comolle_token!O) LEX 
I fRROR(:;) 

f J 

I st :>P \ 
I attributes\ 

I oas51 \ 
I :ittrlbutes\ 
I st:rn \ 
I attrlb1.1tes\ 

I count \ 
I set _I abel\ 
I set_I ctbel \ 
I pass2 \ 
I set_laoel\ 

I COJnt \ 
I count \ 
I set_taoel\ 
I co.mt \ 
I stop \ 

I toke.,s \ 
I sklo_label\ 
I sklp_label\ 
I sklo_label\ 
I stop \ 

I to~ens \ 
I toke.,s \ 
I action \ 
I to~e~s \ 
I to-<ens \ 
I to"<e.,s \ 
I tokens \ 
I to"<e.,s \ 
I to-<e-'ls \ 
I actlon \ 

I laoel \ 
I tokens \ 
I to~ens \ 
I to-<ens \ 
I to1<:e1s \ 
I to..;e1s \ 
I to'<e1s \ 
I I 3:>e I \ 
I to1<:e1s \ 
I stop \ 

) 

;;c 
Cl) 
0. 
c: 
(') 
c+ 
-'• 
0 
::s 
VI 

...... 
0 
-s 
c+ 
::r 
<D 

;::o 
Cl) 
0. 
c: 
(') 
rt 
-'· 
0 
::::; 

I 
OJ 
::::; 

lO 
c: 
OJ 
lO 
Ill 

:::: 
-I 
O:J 
I 

0 
\.0 
w 



q1 

CJ"' qq 
1on 
t 01 
10Z 
103 
104 
105 
106 
107 
10!1 
UJCJ 
110 
111 
HZ 
113 
114 
115 
116 
117 
1 t" 
11CJ 
t ZD 
121 
12Z 
123 
121t 
125 
12!) 
127 
12, 
12q 
13D 
131 
13Z 
1l3 
1Jlt 
135 
11& 
137 
13!1 
nCJ 
1 i.o 
141 
1 '-'-
143 
144 
145 
146 
147 
tits 

) 

action I l 
I LEX 
I Ll:X 

I LF.X 

<declmal•lnteger> l 

I NEXT_ST"1T 

1 Nnr_snn 
I POP ( 

I POP 
I PUSH ( <name> ) 
I PUSH 

I ERROR 

I ERROR 

I C 
I 1 
I C 

I l 

<declmal•lnteger> 

I <auoted-strlng> 

I .. \" 

I <anv-token> 
I <any-token> 
I <no-token> 

st•t I <~uoted-strlng> 

I ( 
I l 
I 

I •\" 

I <any-token> 
I <no-token> 

args I <Quoted-string> 

I ( 
I l 
I "\"" 

I <any-token> 
I <no-token> 

I as t _parent 

, 
I L~X 

I LEXl21 rtn!11 LEX!2l 
I E?PORUCJl Cobl_red.Ilast!Nobl_redl =OJ 

reductlon_end NEXT_ST~T 
I rtn(2l LEX 
I EPROR(lCJl CobJ_rej.!!3st!Nobl_redl = 01 

reduction_end NEXT_ST~T 
I rtn(3) LEX 
I fQR()R(1CJ) CobJ_red.Ilast!No!:>J_redl = 01 

reductlon_end NEXT_STHT 
I rtn!lt) LEX 
I LEX!21 rtn!5l LEXl21 
I FRR'lP(1CJI CobJ_red.!IHt(NooJ_re:n = 01 

reduction_end NEXT_ST~T 
I CSlnclude_ERROR = "1"01 set_actlon_wlh_args 

LFX!21 PUSH!last_parenl 
I fDP.OR(1CJ) CobJ_red.Ilast(NobJ_redl =DI 

reductlon_end NEXT_STHT 
I LFXl11 output((61" .. II (51'" "I 
I ERMRIZ11 LF.X 
I ERR0?(21) LEX 
I E'~R:'l?!~1l LEX 
I ERRORIZ31 CobJ_red.Ilast!NobJ_redl =OJ 

reductlon_enj NEXT_STHT 
I EPR1R!221 CobJ_red.Ilast!NobJ_redl =OJ 

reductlon_end LEX 
I set_actlon_wlth_args LEX<21 PUS~(last_>are~I 

I set_action L~X 
I ERROR(5) 

I output("""'"> outoutCto~en_valuel output('""""I 
LFX 

I outout("("I LEX PUSH(stmtl 
I LFX 
I outout (";"II NL II C&I" " II (51" 'I 

LEX 
I ERRrJR!?l+I CobJ_red.tlast(NobJ_redl = JI 

reductlon_enj LEX 
I outout!token_vjluel outout(" "I LEX 
I ERROR(5) 

I output("""") outout(token_valuel outout 1••••1 
LEX 

I outnutC"!") LEX PUSH(argsl 
I outout("l"I LEX 
I fQRQR(Zlt) CobJ_red.IlastCNobJ_redl = 01 

reductlon_en~ LEX 
I output<token_valuel LEX 
I ERRORC5l 

I output<";", outputCNL) 

I nei<t_red\ 
I action \ 

I laoel \ 
I action \ 

I laoel \ 
I action \ 

I I at:>el \ 
I action \ 
I action \ 

I I aoel \ 

I args \ 

I I aoel \ 
I sht \ 
I action \ 
I actio~ \ 
I action \ 

I I aoel \ 

I laoel \ 
I args \ 
I action \ 
I stop \ 

I sht \ 
I args \ 

) 

I I ast _pare~ \ 

I sht \ 

I I loel \ 
I sf'nt \ 
I stop \ 

I args \ 
I args \ 
I SUC<_=>Q? \ 

I laoer· \ 
I args \ 
I stop \ 

I action \ 

:;o 
CD 
0.. 
c:: 
(") 

M" ....... 
0 
::::s 
(/I 

-ti 
0 
-s 
M" 
::r 
CD 

:;o 
CD 
0.. 
c:: 
(") 

M" ....... 
0 
::::s 

r 
Q.J 
::::s 

c.o 
c:: 
lll 
c.o 
CD 

::s: 
-I 
cc 
I 

0 
i.o 
w 

., 



149 next_,.ed I "\" 
150 f Rl':TUPN "\" 
1'H I STACK "\" 
1'>2 f STllCl(_POP "\" 
1 r;3 I <name> "\" 
154 I <name> 
155 
15& I < "tny- token> ''\" 
157 I <any-token> 
15" I <no-token> 
159 
t60 stop I <no-token> 
161 I <any-token> 
162 
163 

) 

I next_reduction reduction_eni LEX 
I ter~ln3l_reduction reductio~_enj L=:X!21 
I stacke1_re~uction re1Jction_en1 LEX<21 
I stackej_reductlon_with_poo redu:tlon_~lj LEX!21 
I sbecified_label reductlon_end L~X(21 
I sneclfled_label reductlon_end ERROR(1ol 

NFXT_ST~T 

I I 1:>el 
I I :i:>e I 
I I 3:>e I 
I I ;i:ie I 
I I a:>e I 

I I a:>el 
I FPPJR(~l next_redu:tion reductlon_end ~!XT~ST~T I la:>el 
I EPROR(t~I n1xt_rejuctlon reductlon_enj ~FXT_ST~T/ la:>el 
I ERROR(;) I st:>o 

I reductlons_end 
I ERROR<,> rejuctlons_end 

) 

I RETlHN 
I RETU~N 

\ 

' ' \ 
\ 

\ 
\ 
\ 
\ 

\ 
\ 
++•! 

J 

:::0 
C1) 
0. 
c: 
(") 
M-...... 
0 
:::s 
(./') 

....., 
0 
-s 
M-
::::r 
C1) 

:::0 
C1) 
0. 
c: 
n 
M-...... 
0 
:::s 
I 
Ill 
:::s 

l.C 
c: 
Ill 

l.C 
C1) 

3: 
--i 
OJ 
I 

0 
\.0 
w 

1;., 


