»

MULTICS TECHNICAL BULLETIN , MTB=- 093

TO? Distribution
FROM3 Gary C. Dixon
DATE? June 20, 1974

SUBJECTT The reduction_compiler and lex_string_

This MWTB8 describes the reduction fanguage outftiined 1In
MT3-080, and provides writeups for the reduction_compiler command
and for the lex_string_ subroutine.

The reduction compllter complies the BNF-tlke statements of
the reduction |anguage into the syntax analyzer of 3 compiler.
By coupling this syntax analyzer with tnhe {jexlng functions of
tex_string_, and adding some simple-to-program action suroutines
which perform the semantic analyslis function, It Is possibile to
write a moderately sophisticated compliler In one or two man days.
The basic portion of the reduction_compiler itself was written in
two man days. The reductlon statements defining the reduction
fanguage are attached to show how simply 3and clearly a compiler
tanguage can be defined by reductionse.

You comments on possible extensions or modifications of the
reduction_compiler or of lex_string_. would be appreciated.
Please mail your comments to GDixon.PDO on the MIT Multics.

Mul tics Project Internal working documentation. Not to be
reproduced or distributed outside the Multics Prolect.

MT8- 093 ! 1
MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_compiler |
! }

Special Command
05/730/74

Names? reduction_compliler, rdc

Often in the course c¢f programmingy, it becomes necessary to
detine a new language, and to write a compliery interpreter, or
other form ot transiator for the (anguage. Examples of such
fanguages in the Multics system include exec_com control
fanguage, runoff controil fanguage, the ftanguage used In the input
segments for set_search_ruies, the Iinput language for the
error_table_compiter, the binding control |anguage used In bind
segments, and of course the programming fanguages {(PL/I, Fortran,
A{LM, efc). Some of these newly-developed languages will be wused
heaviiy, and thus deserve specially~-designed transiators which
are optimlzed for that particutar language. However , many new
janguages are developed as part of tools which will be used
infrequentiy. Ffor such languages, there is more need for simple
transiators which are easy to write, to understand and maintain,
and to extend than there is a need for o2ptimal, speclal-purpose
transiators. The reduction_compller provides a facility for
converting the syntax and semantics of a new language, as defined
by a set ot reductions, into a simple, standardized, easy to
understand, and moderately efficlent plece of PL/I code.

Usage
reduction_compiler segment_name -ctli_arg-

1) segment_name is the path name of the transliator source
segment containing the reduct ijions to be
compiled, It the final entry of this path
name does not end with a suffix of .rdy, then
oerrd [s assumed.

2) cti_arg may be one of the follonwlng optional control
arguments.

-longe =1g all error messages will include a detailed
description of the 2rror which has occurred.
The -default 1[Is to print the detailed
description the fti~st time an error occurs,
and brief descriptlons thereatter.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Ince.

| l MY8-093

! reduction_compliler | MPM SYSTEM PROGRAMMERS * SUPPLEMENT
{ !
Page 2

-brief, -bf atl error message will include only a brijef

description of the arror which has occurred.
The default is to print a detailed
description the first time each error occurs,
and briet descriptlons thereafter.

Ihe Iranslator

A transtator source segment which Is to be compiled by the
reductlion_compller (rdc) should be organized as shown in
Figure 1. The transtator source segnent {hereinafter calied
transiator.rd) contains? a copyright notice or other PL/I
comments {(optionai); a set of reduction statements and reduction
attribute dectarations - the delimiter /%*++ opens the set of
reductionsy, which are cliosed by the dalimlter ++¥/3 a PL/I
procedure statement for the translator) PL/1I deciarations tor
the ftranstator®s varlables; a PL/I declaration for an
error_controfi_table, containing the text of error messages to be
generated by the transtator (optionalt); a PL/I <call statement
invoking the lex_string_ subroutine to parse the transiator®s
character string Input iInto tokens) a PL/I call statement
invoking the SEMANTIC_ANALYSIS subroutine which contains the
transtation code generated by rdcy a PL/I return statement: one
or more PL/I function subprograms which are refative syntax
functions (optionatl); and one or mo~e PL/I subrpoutines which
asslgn semantic meaning to the legal phrases in the input. Each
of these parts of a transltator is described further In the
sectlons which foltlonw.

The translator 1is compiled by a two=-step process, as
litustrated In Figure 2. Flirst, transtator.~d is conplied by rdc
to generate a PL/I source segment (hereinafter called
transtator.pii). transiator.pl!l contains? a heading whilch
jdentjifies the transfator source segment, the verslion of rdc used
to compile that source segment Into the PL/I segmnent, and the
date and time of complilation; toliowed by the contents of
transfator.rd; followed by the transiation code generated by rdc
from the reductions (including the SEMANTIC_ANALYSIS subroutine)
and conciuding with a PL/I end statement for the transtator,
transtator.pli is then complied by the PL/I compllier to produce
the transtator oblect segment.

Note that, since PL/I <code Is inserted In transiator.pti
atfter the contents of transiator.rd, care must be taken when
coding translator.rd to Insure that all of the semant subroutines
and retative syntax tunctions are ended correctly, and that pg

¢ Copyright 1974, Massachusetts Institute of Technol ogy
: and Honeywell Information Systems Inc.

MTB8- 093 !

MPM SYSTEM PROGRAMMERS® SUPPLEMENT { reduction_compifer |

!

06/20/74
Page 3

end statement ls inciuded for the main procedure of
transiator.

/l X R ER RS IE SRR R B R LR RS]
* ¢ Copyright ... * ! copyright notice
X EE S SRR RS R R R F W) !-/ _’
/%44 -
MAX_DEPTH 5 \ !
BEGIN ! redaction statements and
/ / / \ { attribute declarations
/ / / RETURN \ {

ve%)
translator! procedure;

dCl eee e §
see s 9 { traaysitator's
H ! declarations

aee e

dcl error_controli_tables..;

call Jlex_string_sSlex(..})31 calls to parse transtator

Pthis_token = ,..43% { input Into tokens,
call SEMANTIC_ANALYSIS()3! traxslate these tokens,
return; { & return

fcnt! procedure returns H

{(bit(1) atigned); ! relative syntax
end fcnj 1 functions
semant! procl(.ce)} —i semantic
ces ! subroutines
end semant; §

Figure 1t Organlzatlon of a Translator

¢ Copyright 1974, Massachusetts Inst]ltute of Technol ogy
and Honeywell Information Systems Ince

the

!
reduction_complter |
{

Page &4

c

~lranslator,rd . ____ __

/% SENBRERBEENNEXE

¥ ¢ Copyright *
I XYY TYN R YYY ¥/

—

/7¥++ reductions ++¥%/
transtatort proc(ees)}

dci cs ey
error_control_table.s. 3

call tex_string_Ssiex..})
call SEMANTIC_ANALYSIS;
returns

fcnt proc returns
(bit(1) aligned);

end fcnj

semant! procleees)?

end semant;

~lrapslator

Filgure 2t Two Steps of
Compliing
a Transtator

MTB=-093
MPM SYSTEM PROGRAMMERS ®* SUPPLEMENT

-lransliator.pli

l/‘#;l!—l#!!#/,
{ /7* heading ¥/ {
! !

J¥* % ¥ B K ¥ XK ¥ ¥ ¥/

FASE R AL X AL L R SRS LR

* ¢ Copyright ¥
FERRFIENIE REREE N ¥y

Z7¥4++ reduct jions ++*¥/

1]
H
n
"
(1}
1]
]
v

- S Gr EE e TR e R AE G S Se R we e e as PO Ge S0 Ga e o=

transliator?! proc{s«.) 3

dCl eeey
error_control_tadbleeees

call tex_string_3l1ex..3
call SEMANTIC_ANALYSIS:
return;

fcnd proc returns
(bit(1) atigned) ;

end fcnj

semant? proc (ee.e)

end semant;

- e e e e o e o we e wm

SEMANTIC_ANALYSIS:
procedure () §

end SEMANTIC _ANALYSIS

ERROR?: procedure{n)}

end ERROR;

NE{T_STMTY?! proc();

end NEXT_STMT;

PUSHt proc(l abel) 3

end PUSHS

A
I
i
[}
|
|
[
|

_——==2==E==

- Ow G ca G0 a8 TN 0 on e An oo oo

LB
2
Q
-
3
Q
2
n
[]
-
[+]
=
e

Copyright 1974, Massachusetts Institute of Technof ogy

and Honeywe

ti Information Systems Ince.

\

MTB-093 1 |
MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_compiler |
i !

06720774
Page 5

Icanslation - Part It Parsing the Input Inte Iokens

The transiator receives a character string as its Input,. It
must perform some transformation on this string, as def ined by
the syntax and semantics of the transiatlon language. The
translation begins by parsing the character string into a serlies
of tokens (i.e., character strings separated by the transiation
language®s defimiters). These tokens are the atoms of the
transtation language.

The {ex_string_ external subroutine can be calledy, as shonn
In Figure 5, to parse fthe I[nput characters into tokense.
tex_string_ generates a chained list of token descriptors In an
area provided by the translator. Each descriptor describes one
ot the tokens Iin the input. The token descriptors are chained
together (forward and backward) in the order in which thelr
respective tokens appear In the Input string. The translator
then has a chaln of tokens which it can process, as shown Iin
Figure 3.

«=>»] }J==>1 J==>1 | ==>} {==>1 }==>1 j==>) {==>1 1 ==>] !
! 1¢c==| j<==1} { <¢==| <=~ j<~-~1 <=1 j<=={ {<== {
I__1 f__ 1 I | 11 i__1 P __1 b__ ! 1__1 1 1

{ ! H 1 !

v v -V v v

Volume H 70092 ; Write

- & o |
—l ew

Flle

Figure 3¢ Input Tokens and thelr Descriptors.

lex_string_ can optionatly be invoked with a statement
delimiter character string. lex_string_ uses this delimiter to
group the tokens Into statements, It can also create statement
descriptors which point to the first and last token descriptors
of each statement, FEFach token descriptor In turn points to its
respectlve statement descriptor, The statement descriptors are
chained together (forward and backward) in the order in which
statements appear In the input striig. Thus, with statement
del imiters, the input to the transliator [Is of the form shown in
Flgure 4.

¢ GCopyright 1974, ﬁassachusetts Institute of Technol ogy
’ and Honeywell Information Systems Inc.

! H ‘ MTB8-093

! reduction_compliler | MPM SYSTEM PROGRAMMERS* SUPPLEMENT “a
! !
Page 6
] e >l lesscccccecaan- >t
R R R ket T R t
bt bl jommrmmm- | { =~ et
|o=eeeea>] jCoem===~ ! | _l<c===] j===>1__ | ¢====}
It A A i 1A 1 i1 A L
H 41 1 i1 i i ! R
1 ! ! i i1 11 LR H 11
Xl -4 . ¥ yi iy yi . iy
==>1 H==>] J==>1. l==>1 J==>1 {==>1 {==>] 1==>1 {-=>1 |
I tc==} I<==] {e==1 {f<==| l<==] I<==1 Jj<==] J<==-1 |
11 __1 __t 1__1 1__1 1 1__1 1__1 .
! ! [! i ! ! ! !
v v v v v v v v v
Volume L 70092 ’ Write H Flite 4 ’

Figure 42 Tokensy Token Descriptors, and Statement Descriptors

Figure S shows lex_string_ being invoked ftirst to initjalize
the Jlex_delims and lex_control_chars oreak definjition strings,
and then to parse the transiator®s 1({input character string
(described by Pinput and Linput) into tokens. In this example?
a double quote (*) character is used to open and close Qquoted
strings; the characters /* open comments, which are closed by
*/s a semi-coton (3) is the statement delimiter; and the <cotfon
(3)y comma (,)y space (), and all of the ASCII control
characters including the PAD character operate as del imiters, of
which the space character and all control characters except
backspace are lgnored dellmiters which a~e not returned as ftokens
themselves, even though they separate tokens. Both token
descriptors and statement descriptors are generated by
tex_string_ in thls example. No descriptors are generated for
the double quotes nhich enclose quoted strings, although
descriptors are generated for the Qquoted strings themselves.
Refer to the writeup on tex_string_ for more detalls on |ts
cal ling sequence, as well as for a comptete declaration of token
and statement descriptors.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywel] Information Systems Inc.

ﬁ

MT8-093 ! T
MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_compiler 1
- ! !

06720774
Page 7

breaks = substr(coliate,1,33) 1 "3, 11}
substr(coilate,128,1)3

ignored_breaks = substr(collate,1,8) 1!
substr(colliatey, 10424) 1} subst~(collate,128,1);

call lex_string_sinit_lex_delims('nerer, reren, syxn, wug
3"y "0"by breaks, lgnored_breaks, flex_del ims,
lex_control_chars);

cali lex_string_$iex(Plnput, Linput, Linput_ignore, Parea,
..1nn“b, lll!llll’ l.l.llll’ II/‘II, ll./l!, It;“’ bf‘eaks ’
ignored_breaks, fex_dellms, fex_controli_chars,
Pfirst_stmt_descriptor, Pfirst_token_descriptor, code)}

Pthis_token = Pfirst_token_descriptor;

call SEMANTIC_ANALYSIS();

return;

Fligure 53 Parsing Transiator Inout Into Tokens,
Semantically Analyzing Those Tokens,
and Returniag

Icapsiatiop - Part II* Apaiyzing the Yosens

The translation continues by analyzing the syntax of the
input tokens to identitfy token phrases which are (egal in fthe
transltation (language. Legal token phrases must be assligned some
semantic meaningy, according to the specitications of the
translation {anguage, and llfegal phrases must be diagnosed to
the user., The syntax and semantics of the transfation | anguage
are coded In a set of reduction statements. The reductions
shoulid specify the syntax of all possinple sequences of input
tokens, identitying tegal sequences 2a2xplicltly, and 1itlegal
sequences by detfault.

The transiation ot the Iinput tokans 1Is «carrjed out by
catiing SEMANTIC_ANALYSIS, an internal procedure generated by
rdc. SEMANTIC_ANALYSIS compares a sejuence of Input tokens
(called a token phrase) with the syntax specifications defined In
the reductions. It a token phrase matches the syntax
requirements of a given reduction, the action routines associated
with the reduction are Invoked to assign some semantlc meanling to
the token phrase. The transiation Is complete when 2ach of the
input token phrases? elther has been deslignated as a Jlegal token
phrase, and has been assligned a semantic meaningj; or has been
diagnosed as an illegal phrase.

¢ Copyright 1974, Massachusetts Instltute of Technol ogy
and Honeywell! Information Systems Inc.

! i ’ MTB-093
| reduction_compiter | MPM SYSTEM PROGRAMMERS ®* SUPPLEMENT
l 1

Page 8

The transiator.pli segment generated by rdc contains
dectaratlons for many variables used oy SEMANTIC_ANALYSIS. In
particutary ail of the varlables defining the structure of fokens
and their descriptors are declared in the main procedure,
Several of these variables are declared in the maln procedure of
the transtator so that they can be accessed by the transliator®s
subroutines,y, as weli as by SEMANTIC_ANALYSIS. Two such variadbles
are the pointers, Ptoken and Pthis_token, which are used In
processing the Input tokens, as folilows.

At any point In the transiation processy some ¢t oken phrase
Is being compared with the reductlons. This phrase ls calied the
“current™ token phrase and its first token (s callied the
“current” token. Pthis_token points to the descriptor of the
“current® token, and hence ldentifijes the beginning of the
“current®™ token phrase. Ptoken points to the descriptor o¢f the
token wWithin the *current®™ token phrase which Is being compared
with one of the syntax specifications of a reductione. Figure 6
iftustrates the use of these two pointers.

Pthis_token Ptoken
1 {

_— A — — - _ — _—

-=>} {==>{ f==>1 j==>1 {==> f==>1 f==>1 {==>] [|==>] '
| j<-=} <=~ j €=~ { <=~} <=~} ¢==| j<==f | <== !
1__1 t__1 f__ ! 1_1 i1 S | t__1 11 P

1 ! i { 1 § !] 1

v v '} v vV v '} v v
Volume H 70092 H Write ’ Fitle 4 H

A A

]]

] TOKEN BEING EXAMINED

[]

"CURRENT™ TOKEN
| _"CURRENT" TOKEN PHRASE___I

Figure 638 Pthis_token Identifles "Current® Token,
Ptoken Identifies Tokens Being Exami ned

Note that the ‘*current®™ .token o>hrase does ot contain a
tixed number of tokens, Instead, the flangth of the ™"current"

phrase varijes fto accommodate the nuwber of lan guage syntax
spacliftications In each reduction. 0f course, It ftewer tokens
remain to be translated ¢than are ~equired by the syntax

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlion Systems Inc.

MTB-093 ! Ty
MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_conpiler I
! s

06/720/74
Page 9

specificatlons of a reduction, then the “current* token phrase
cannot match that reduction.

Reduction Language

The lnput tanguage for rdc contalns two kinds of statements?
reduction statements (or simply reduyctions), and attrioute
declarations. Reduction statements specify the syntax of phrases
In the translation tanguage, and they assign semantic meaning to
these phrases. Attribute declarations control the slze of
fixed-length tables which the translator will use. If any
attribute dectarations are given, they must precede the reduction
statements.

The sections below describe the reduction language. Section

headers have been numbered 0 provide easy cross-references
between sections.

1. Reductijion Statements

A reduction is a statement which contains four partst a
reduction tabel fleld; a syntax speclflcatlon fleldy an action
specijification field; and a next-reduction field. It has the
forms

optional labels /7 syntax /7 actions / next-reduct ion \

At of the ftlelds must appear In eachr reduction, In the order
glven above., These flelds are separated from one another by a
right siant (/) character, and the final fleld is terminated by a
left slant (\) statement delimiter character. The tlields of the
reduction statement may span any number of llnes. A double guote
{“) character s used as the quoting delimiter, and teft
parenthesis ((), right parenthesis ()}, less than (<), greater
than (»)y teft bracket ({), right brac<et ({l])y and bachkspace
characters delimit tokens within reductions, and ara tokens
themselves. Spacesy tabs, new-iine, new-page, and other ASCII
control characters also delimit tokens, but are ignored by rdc,
unt ess they are enclosed [In gquotes.

The left stant {\) character |Iis used as a statement
defimjiter for reductions to facilfjitate writing a set of
reductions for a tanguage which uses the more common semi-colon
statement delimiter,

¢ Copyright 1974, Massachusetts Instlitute of Technol ogy
and Honeywell Information Systems Inc.

| i MTB= 093
!} reduction_compifer | MPM SYSTEM PROGRAMMERS ®* SUPPLEMENT
1 !

Page 10

2. Labet Fleld

The fabel ftjield of each reduction may contain zero, one, or
more jabels by which the reduction may b2 referenced. A label |is
a character string which begins with an atphabetic character, and
contains 32 or fewer alphanumerijic or underliine (_) characters.

Each of the 1labeis defined In any set of reductions must be
unique.

We will see (in Section 4) that tabals can be used in the
next-reduction tfield and in some actlon specificatlions to
reference a particular reduction (in Sectjion 1i.1). In addition,
the first reduction must have a3 label of BEGIN to distingulish |t
from any attribute declarations which may precede the reductions.

3. Syntax field

The syntax specification field of each reduction identifies
a token phrase by placing requlirements on the tokens In the
*"current” token phrase. The tokens in the "current®™ phrase are
compared consecutively with corresponding specifications in the
syntax field. It each of the tokens matches [Its corresponding
syntax specification, then the token phrase matches the
requirements of the reduction. It is possible to classify ail of
the token phrases in the input by writing a set of reductions
whose syntax flelds [dentjify all of the legal phrases In the
t anguage to be translatedy, and by Including one or more
reductions which match ali{ other (jitlegal) token phrases.

There are three types of syntax specliflcatjons? absolute
syntax specificationsy relative syntax functions; and bulilit-in
syntax functions. They are discussed in the sectlions below.

3.1 Absofuvute Syntax Specifications

Absolute syntax specifications require t hat their
corresponding input token equat a particular character string.
Absolute specifications are represented oy their character string
vajue in the syntax specification field. If a set of reductions
were written to transtiate the tokens in Figure 6, "“Vojume®*, *“t*,
3%y “Write*, and "Flle" would probably be ldentified by absolute
syntax specifications.

rdc®s delimiter characters may »de used in absofute
specitications by enclosing the entire specification in aquotes
(e.g., Olandlorli’ “>Udd>pl‘0l>prog"’ l..lllll’ "(“’ QI)CI’ ll<ll’ II>II’ ll/ll,

~

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Ince

“N\

’Fn

MT3-093 ' Ty
MPM SYSTEM PROGRAMMERS® SUPPLEMENT reduction_compller 1
!

06/20/74
Page 11

A\®y M["y, "1y, or " (i.e.y "“<backspace>*)). In addition, the
del imiters which have special meaning within the syntax
specitfication field ot a reduction (/y < and >) may be used as
one-character absolute specifications by underlining the
characters. That is, [/, <y and > are Interpreted by rdc as the
single-character absolute syntax speclfizations, /y <, and >.

3.2 Relative Syntax Functions

Relatjive syntax functions are a second type of syntax
specification. A relative syntax function requires that |Its
corresponding input token meet some speclal requirements t hat are
defined by a PL/I function. The requirements defined by such
functions may be quite speclific or very general in nature,
according fo the needs of the transiation language. The
transliator must supply the rejative syntax tunctions which it
needs to identlfy phrases In the transiation language. lero,
one, or more PL/I functions may be <created and re ferenced as
refjative syntax functions. Relative syntax ftunctions are
represented Iin the syntax speclification field by enclosing the
name of the function in angle brackets (2.g3+¢s <fcn_name>).

Typical retative syntax functions might be descr ibed as
followst «relative_pathname> requires that the token value be 3

refative path name, and calls expand_peth_ to associate an
absolute path name as the semantic value of this relative path
namej <positive_integer> requires that the token vajlue be a

character string representation of a positive integer, and stores
the numeric value of the Integer In the token.Nvalue element of
the token®s descriptor; <volume_jd> requires that the token
value be a 6-character tape volume jdentifjier; and <time_of_day>
requires that the token value be convertibie to a time of the
day.

3.2.1 Relative Syntax Functions - Lalillag Seguence

The calling sequence of a relative syntax function is shown
belon?

dct fcn_name! entry returns (bit (1) aligned);
token_matches = fcn_name() 3
The function should return a value of "“1“b 1f the iInput token

matches the requirements of the function, and *"0'"o otherwise.

c Copyrlight 1974, Massachusetts Inst]itute of Technof ogy
and Honeywell Information Systems Inc.

1 § MTB- 093
t reduction_compiter | MPM SYSTEM PROGRAMMERS * SUPPLEMENT

Page 12

The function must be an Iinternal procedure of the translator. It
can have any valid PL/I tunction name which is 32 or fewer
alphanumeric or underl ine characters in length, which contains at
feast one lower-case alphabetic letter.

3.2.2 Relative Syptax Euncilons - Referancing the Ioken

By being an iInternal function of the transtator, the
relative syntax tunction can reference its corresponding token in
the “current™ token phrase to see if that token meets the

requirements of the function. To do this, the function
references token_value, a variable declared by rdc in the main
procedure of the translator. token_value is based on the
information in the token®s descriptor,. This descriptor |is
pointed to by Ptokeny, another varlable daclared by rdc which |1s
set before the relative syntax function (s Iinvoked, {See
Figure 6.)

3.2.3 Relative Syntax functiaons - Assiqnipg Semaptic Values

The refative syntax function may assoclate a semantic vatue
with the token being examined in one of two ways. It can set a
varlable which has been declared Iin the main procedure of the
transtator. Or 1t can allocate a semantic value structure jin the
area used for token descriptors, and c¢an then chain this
structure onto the token descriptor uysing the token,Psemant
pointer. Refer to the fex_string_ arlteup for a complete
dec taration of the token descriptor®'s st~ucture.

3.3 Bullit-ip Syntax Eunctlons

The third type of syntax speclitication Is the ouilt=-in
syntax functione. These are refative syatax functions which have
been pre~defined by rdc. Aithough several of the built-in syntax
functions make requirements on the input token string that would
be difficult to implement as reljative syntax functions, most
built-in syntax functions were defined merely to facilitate the
implementation of rdcs Itself. Below is 3 list of the bulit-in
syntax tunctions which have been defined.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Inc.

MT8-093

MPM SYSTEM PROGRAMMERS® SUPPLEMENT { reduction_compitler 1
! .

06720774

Page 13

<no~-token> requires that there are no more tokens

<any~-token>

<name>

<decimal=Integer>

<quoted=string>

4

C

<BS>

remaining In the inout token string. Al)l of
the tokens have bean translatedy and the
chain of token descriptors is exhausted.

requires that its co~responding token exist
in the Input token string. Any token value
is accepted as part of the tegal syntax of
the ltanguage being translated.

requires that the Input token be a character
string nhich begins with an alphabetic
character and contains 32 or fewer
alphanumericy, wunderfine (_), or dollar sign
($) characters.

requires that the Iinput token be a valld,
optionailly-signed decimal integer (as defined
by the cv_dec_check_ subrou tine) . The
numerlc value of the token is stored as 1Iits
semantic value in the token.Nvalue element of
the token descriptor structure,

requires that the token.S.quoted_string bit
be turned on in the input token®s descriptor.
This bit Is turned on by lex_string_ 1f the
token was enclosed within quoting delimiters
when lex_string_ parsed the transiator Input.

requlres that the Input token be a single
backspace character,

Next-Redyction £ield

Before discussing the assignment of semantic meaning to the
token phrase which matches a reduction, the flow of control
between reductions will be described.

Copyright 1974,

Massachusetts Institute of Technol ogy
and Honeywell Information Systems Inc.

i H MT78~- 093
| reduction_compliler | MPM SYSTEM PROGRAMMERS * SUPPLEMENT
{ I

Page 14

When the transliator catis the SEMANTIC_ANALYSIS procedure,
control passes to the reduction whose ltadce!l is BEGIN. The first
of the *current™ token phrases s compared with this beginning
reduction and those which follow untii it matches the syntax
requirements of one of the reductions. The action specifications
ot that reductlion are then performed to 3ssign semantic meaning
to the *"current' token phrase, and fto maxe the next t oken phrase
“current®™.

After performing t he action specifications, the
nex t-reduction fieid of the matched reduction controls which
reductlon the new "current" token phrase [s compared with: The
next-reduction field may be blank, or it may contain a reduction
tabel. It it is blank, then the reduction immediately ftotllowing

the matched reduction 1Is used In the qext comparisons It a
reduction label is specified, then the reduction identi fied by
that (abel is used In the next comparison. In elther case,

comparison of the new *current" token phrase with reductions
continues until a matching reduction Is found. This process is
repeated untit a3ty of the input tokens have been transtated.

Each set of reductions must contain one or more reductions
which use the <no-token> built-Iln syntax function to detect when
atl the Input tokens have been translated. When such a
<no-~-token> reduction is invoked, its next-reduction fjield usually
contains the RETURN keyword, Instead of a reduction fanel, to
speclfy that the flow of control should return to the calter of
the SEMANTIC_ANALYSIS procedure., On return from
SEMANTIGC_ANALYSISy the transiation is complate.

Oftten If several <no-token>» reductions appear In a set of
reductions, a reduction label ls wused In their next-reduction
tield (rather than a RETURN keyword) to branch to a finat
<no-token> reduction which performs epilogue actions and then
returns via a RETURN keyword. Having only one of the <no-token>
reductions perform the epilogue actlons reduces the amount of
translation code generated by rdc.

<spec> 13%= Voltume ! <volume-jid>[,{9tracki7track}] 3
{ReadiHritel)
File <number> 3
Records & <number>[,y, <number>lies 3
Format t (FIFBIFBSIVIVBIVBSIUY 3

Figure 7t BNF Syntax for a Tape Language

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Ince

MTB- 093

MPM SYSTEM PROGRAMMERS®

<

BEGIN
stmt

NNNNNNNNN

vol

NN

Volume ¢ <volume_id>
Read 3
Write 3

File <positive_intager>

Records
Format 1
<any-token>
<no-token>

.
’
*

’

9track 3§
Ttrack 3

<any-token>
<no-token>

numbers
/ <positive_integer>»
/ <any~-token>
/ <no~token>

punct
/
/

?
»
?

/ <any-token>
/ <no-token>

forma

NNNNNSNNNN

Copyright 1974,

t
F

°
’

FB 3§
FBS 3

v

’

v 3
v8s 3

v

.
14

<any-token>
<no-token>

———

SUPPLEMENT 7 | reduction_compiter |

-e
SNNNNNNNN
SNNNNNNNN

N NN NN N NN
N NN NN N NN

NNN N
NN NN

NNNNNNNNN
NNNNNNNNN

Filgure 8t Reductions for the Tape Language
(Action Specifications Omitted)

and Honeywel !}

Massachusetts Institute of Technol ogy

Information Systems Inc.

06/20/74
Page 15

vol
s tmt
s tmt
s tmt
numbers\
tormat \
s tmt \

T A A4

RETURN N\

s tmt
stmt
s tmt
s tmt
RETURN

P AR A A A 4

punct
punct
RETURN

s 7

numbers\
s tmt \
numbers\
RETURN \

s tmt \
s tmt \
s tmt \
s tmt \
s tmt \
s tmt \
s tmt \
s tmt \
RETURN \

! ! MTB- 093
! reduction_compiter ! MPM SYSTEM PROGRAMMERS ° SUPPLEMENT
H §

Page 16

55 Sampie Reduciions #£1

Figure 7 shows the Backus=Naur Form (38NF) for the syntax of
a tanguage which identifles records to be read or wrltten from 3
tape file on a particuiar volume, using a given record format.,
Severai examples befow wil! empioy this 1(anguage to itlustrate
the use of reductionse.

Figure 8 shows how the reduction fields described so far can
be used to define the syntax of the tape language shown In
Figure 7. <positive_integer> and <voiume_id> are the relative
syntax functions described iIn Sectjion 3.2. Note . that an
<any-token> reductlon [s included In each group of reductions, In
addition to a <no-token> reductiony in order to detect errors in
the use of the tape ftanguage. An <any-token> reduction (one
contalning only the <any~-token> bulit=|in syntax specltication)
matches any token phrase except nuil foken phrases (those which
match 2 <no-token> reduction).

6. Action Field - 3emantic Subroytines

When a legal token phrase ls lidentified by the syntax field
of a reductiony the ftranslator must assign some semantic meaning
to that phrasey according to the specifications of the
translation tanguage. It does this by Invoking the semantic
subroutines and other action routines which are specified In the
action fiefid of the matching reductions These subroutines are
Invoked in the order of thelr appearance in the action fieid.

The translator must supply semantic subroutines which assign
some semantic meaning to the matched token phrase. Semantic
subroutines c¢an construct and fit{ In tablesy, build compiler
trees, generate object code, or do any other functions which are
regqulred to perform the translatlon. rdc suppllies other actlon
routines which can make another token phrase the “current™ foken
phrase and perform other functions. These are described |n
Sectlons 75 9, and 11 befowe.

Often the semantic subroutines must reference one of the
tokens in the matching token phrasey, or 1t must reference the
semantic vatue structure attached to the descriptor of one of
these tokens. 8ecause it lIs easlest for a semantic subroutine to
reference the “current” token, a semantic subroutine Is often
preceded In the action fileld by a lexing routine, an action
routine supplied by rdc which makes the token of interest %o the
semantic subroutine be the “current" tokan, Lexing routines are

¢ Copyright 1974, Massachusetts Institute of Technotl ogy
and Honeywell Informatlon Systems Inc.

MTB=- 093] ' 1
MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_compiler 1
i !

06720774
Page 17

described in Section 7.

6.1 Jemantic Subroutines - Calling Seguence

A semantic subroutine may have any calling sequence accepted
by PL/I1. It the subroutine would normalily be Invoked by a PL/I
calt statement of the form?

call semantic_sub (1, "“i1*b, "able", token_value, (cl+c2))}

then the semantic subroutine appears in the action specification
tield as?

semantfc_sub (1, *1“b, "able", token_value, (ci+c?2))

A semantlic subroutline which requires no lnput arguments would be
Invoked by a PL/I call statement of the form?

cat! semant();
It can appear In the action specification ass

semant
An example of a reduction containing semantic subrout ines iss

/ Fite <positive_integer> § / LEX set_tile
open_tile(token.Nvaiue,*r")
LEX(2) / stmt \

It is often useful to define a single semantic suoroutine
which pertorms a group of retated functlons. This semantic
subroutine can then be invoked from many different reductions
with a constant argument specifying which of the functions should
~be performed. Since semantic subroutines may have a di fferent
argument list each time they appear in a reduction action field,
it lIs easy to create and use such a mufiti-function semantic
subroutine In a transliator.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Inc.

1] ’ MTB- 093
! reduction_compiler | MPM SYSTEM PROGRAMMERS * SUPPLEMENT
i i

Page 18

6.2 3emantic Swbroutines - Rassing ¥YarlaRles As Arguments

Several facts must be considered when passing variabies as
the arguments to a semantlc subroutine. First, the semantlic
subroutine iIs actually called from withia the SEMANTIC_ANALYSIS
procedure., Therefore, the subroutine jtself and any variables
passed to the subroutine must be knowd within the scope of
SEMANTIC_ANALYSIS. This can be accomplished by defining internal
semantic subroutines, and by declaring external subroutines and
their variable arguments, within the mailn procedure of the
translator. {See Figure 2.,)

Second, care must be taken to avold name confl jcts between
the varjables declared within SEMANTIC_ANALYSIS, and the semantic
subroutines and their arguments. The variables declared by
SEMANTIC_ANALYSIS bhave all been decliared with names formed of
Jupper-case letters, with a few exceptions described below.
Therefore, name confllicts can generally be avoided by declaring
names of transilator varlables and semantic subroutines which have
one or more lower—-case |etters or digits.

There are three types of exceptions to the upper-case naming
convention used within SEMANTIC_ANALYSIS. These exceptions must
be considered when naming the translator®s semantic subroutines
and varlables. First, SEMANTIC_ANALYSIS uses and has declared
the following PL/I buliit-in functionst addr, max, nully search,
substr, and verify. Second, SEMANTIC_ANALYSIS wuses and has
declared cv_dec_check_ to be the Multics number conversion

function documented in the MPM, Third, the varliables and
structures requlred to reference tokens and their descriptors
have been declared by rdc in the main procedure of the
ftransiator. These variables and structures are referenced by

SEMANTIC_ANALYSIS. They are described (In the writeup on
lex_string_.

6.3 gSemantic Subroutines - Referencing the "“Current™ Ioken

If the semantic subroufine Is an internal procedure, it can
access the character string value of the *current®™ token by
reterencing the token_value variabley, Just as a relative syntax
function does. It can also reference the token descriptor for
the “current” token {via Ptoken)y, and any semantic value
structure attached to that descriptor.

It the semantic subroutine Is an external proc edure, then

token_value, Ptoken, or the semantic value of the "current" token

¢ Copyrlight 1974, Massachusetts Institute of Technol ogy
and Honeywel !l Information Systems Inc.

~

MTB- 093 | ' {
MPM SYSTEM PROGRAMMERS® SUPPLEMENT | reduction_complier 1
| |

06/20/74
Page 19

can be passed to the subroutine as an argument.

6.4 Jemantic Subroutines - Examining Qtyer Iokens

Tokens other than the *current® ftoken may be examined from a
semantic subroutine by obtaining a pointer to the descriptor for
the desired token, assigning this pointer to Ptoken, and
referencing the token_value variable., Pointers to the desired
token descriptor structures may be stored by other semantic
subroutines (for example, in a token push down s tack used to
process polish strings). Alternatively, by using the forward and
backward polnters In the token desc~iptors, the semantic
subroutine can obtain a pointer to the descriptor of a3 token
which precedes or folliows the ‘*current® token by some knomn
number of tokens. For exampley

Ptoken = Pthis_token =-> token.Pnext -> token.Pnexts;

causes the token_value variable to ~eference the 2nd token
following the “current®™ token. Remember that Pthis_token polnts
to the descriptor of the “current® token.

Before Invoking the subroutines In the action fletld of a
reduction, SEMANTIC_ANALYSIS sets Ptoken equal to Pthis_tokeno
SEMANTIC_ANALYSIS does not use or depend upon the vaiue of Ptoken
until the action field has been completely executed. It then
resets Ptoken to equal Pthis_token. Therefore, Ptoken can be
changed by one or more of the subroutlines Iin the action fleld, as
fong as the change has no (il effects on the subroutines which
tfol fow.

The best coding practice iIs for a semantic subroutline fo
2ssume that Ptoken equals Pthis_token, If the subroutine changes
Ptokeny, |t should reset Ptoken to equal Pthis_token before
returning to its caller. (Note that the flexling routlines
described in Section 7 below change the value of Pthis_token, and
then set Ptoken equal to the new value of Pthils_token.l)

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywel| Information Systems Inc.

t i MTB- 093
! reduction_compliier | MPM SYSTEM PROGRAMMERS * SUPPLEMENT
i }

Page 20

6.5 Semantlc Statements Avold Ope-Jtatesent Semantic Subroutines

In many transfators, the majority of the semantic
subroutines perform very simple operatjions iike turning on a bit
or assigning a particular value to a variable. To avoid having
to create one-statement semantic subroutijines to perform these
operatlons, the reduction language provides a semant ic statement
tacility.

A semantic statement is a PL/I - statement (excluding the
final semf=-coion) which appears, enclosed In square brackets, in
the action fletd of a reduction. For example

[tite_number = token.Nvalue + 2]

is a semantic statement which assigns tha numeric value of the
“current® token plus 2 to the variable called file_number.
token.Nvaiue could have been set by the <positive_integer>
relative syntax function descrlibed in Section 3.2. Care must be
taken, as described in Sectlion 6.2y to avold naming conflicts
between the variables wused in semantic statements and the
var Jabiles decliared by the SEMANTIC_ANALYSIS procedure. More than
one semantic statement may appear within the same pair of sguare
brackets by placing a semi-colon between each palr of statements,
For example

{i?t a > 1 then call ERROR(20)% eise call ERROR(21)]

7e Action Field - Lexing Boutines

Besides Invoking semantic subroutines to attach meaning to
the "current™ token phrase, the actlon field of a reduction must
skip over that ophrase so that the next token phrase can be
processed by the transiator. It does this by making Pthls_token
(the pointer to the descriptor of the first t oken in the
*“current® token phrase) point to the descriptor of the ftirst
token of the next token phrase. Thls process of moving the
pointer to the “current™ token s calied lexing. T hree fexing
actlon routines are provided +fto perform this function? LEX;S
LEX(n)S and NEXT_STMT.,

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Ince.

MTB=09o3 H !
MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_compiler !
i 1

06/720/74
Page 21

7.1 Lexing Routines - LEX

The LEX action routline makes Pthis_token point to the
descriptor of the token which immediately ftoliows the “current*
token. This effectively makes the next token the new “current®

token, rdc compiies a LEX actlon routine into a PL/I statement
of the form?

Ptoken, Pthis_token = Pthis_token =-> token.Pnext}
7.2 Lexing Routines - LEX(p)

for positive n, the LEX(n) actlion routine makes Pthis_token
point fto the descriptor of the pth token which immediately
folionws the "current” token. This effectively makes the next pth
token the new “current® token, rdc complles a LEX(2) actlon
routine into a PL/I statement of the formt

Ptoken, Pthis_token = Pthis_token->token.Pnext->token.Pnext3

LEX(n) alsc accepts negative values of p. If p Is negative,
LEX (n) makes Pthis_token point to the ipnlth token which precedes
the *current” token. LEX{(-1) action Is complledc into?

Ptoken, Pthlis_token = Pthis_token->token.Ptast;

Note that care must bDe taken when writing the reductions to
insure that all tokens gkipped gver to rezach the new ‘“current®
token actualty exlist. If they do not exist, the code shown above
witil attempt to reference through a null pointer. The token
which wilt become the new “current"” token as the result of a
LEX(n) operation need not exlist, however.,. If the nth following
(or Inith preceding) token does not exist, Pthis_token and Ptoken
are set to null pointers by the code shown above, Indicating that
the "“current” token phrase Is a null token phrase (leeey oONe
containing no tokens and matching a <no-token> reduction) and
that ail of the Input tokens have been transtated. In every
transtation, the last phrase to be translated is such a null
phrase.

c Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Inc.

1 i MTB=- 093
! reduction_compiler | MPM SYSTEM PROGRAMMERS ° SUPPLEMENT
§ : §

Page 22

7.3 Lexipa Routines — NEXT_STHMT

The NEXT_STMT action routine makes the first foken of the
next statement (affer the statement containing the “current®
token) the new “current™ token., This actlion routine can oniy be
used when the transiator requires lex_siring_ to create statenent
descriptersec It can be used to skip over the remainder of a
statement when an unrecoverable error has bzsen defected in that
statement.

7.4 Lexing Roufines - Invoked frem 2 Senanfic Subroyiine

It s semetimes necessary for a semantic subroutine to

perform fexing operations, especialily to cerrect an error. It
can perferm & LEX or LEA{n) operation by executing a PL/I
statemen? 1ike the ones shown In Sections 7.1 and 7.2 it can

perform a NEXT_STHMT operatien by caliing the NEXT_STHMY internal
procedure which is suppiied by rdc?

call NEXT_STKT{}S$

These operations mnay onlily be performed »dy semantic subroutines
vhich are |internai procedurss, thereoy having access fto fthe
Ptoken and Pthis_token variabies and to the NEXT_STMT procedure,
or by externaj procedures fo which +These varijiables or fthe
NEXT_STMT procedure have been passed as arguments.

8. aanele Reductions #£2

Figure 9 shows the reductlons for cur fape {anguage, with
the actlon fieids fitled 1in. Note that oniy one o¢f the
<no=token> reductions performs epliogue functions, and that fthis
reduction receives controf from ajii other <no-token> reductionse.
Note too that no semantic subroutines have been specified In the
action fleld of reductlons which identify jiiegal phrases In the
input., Sectlion 8 describes a general-purpose error diagnosis
semantic subroutine whlch can be used by any transtator to Inform
the user of errors Iin the Input %o the franstator.

¢ Copyrlght 1974, Massachusetts Instlifute of Technof ogy
and Honeywel! Informatien Systems Inc.

~

MTB-093

MPM SYSTEM PROGRAMMERS®

C

BEGIN

stm

vol

t

NN

NN N

MNNNN

Vofume ¢

Read 3
Write 3§

File <positive_integer>

Records
Format 3
<any=-token>
<no-token>

]
y 9track
s Ttrack
<any=-token>
<no-token>

-9 B8

numbers
/ <positive_integer>

punct

/
/

/
/
/
/

<any-token>
<no=-token>

H
<any-token>
<no=-token>

format

end

NN NN NNNNN

NN

F 3

FB 3

FBS 3

vV 3

v 3

VBS 3

u s
<any=-token»
<no~token>

<any=-token>
<no-token>

Figure 912

SUPPLEMENT

<volume_id> 3

Copyright 1974,

~N

NN N NNNNN NN N NN N

NN NN

NN N NN NNNN

NN

{ }
! reduction_compiler {
{ i

06/720/74
Page 23

LEX(2) {volume=t oken_valuel
[track = 9] LEX / vol \
LEX{2) (mode="r"*] / s tmt \
LEX{2) [mode="w"] / stmt \
LEX [fite_no=toxen.Nvalue]

LEX(2) / stmt \
LEX(2) / numbers\
LEX(2) / tormat \
NEXT_STHMT / stmt \
perform_1lo / ena \
LEX / stmt \
LEX(3) / s tmt \
{track = 7] LEX(3)/ stmt \
NEXT_STMT / s tmt \

/ end \
set_record_no LEX / punct \
LEX / punct \

/ end \
LEX / numbers\
LEX / stmt \
LEX / numbers\

/ end \
LEX(2) tormat(l) / stmt \
LEX(2) format(2) / stmt \
LEx(2) format(3) / stmt \
LEX(2) format(y) / stmt \
LEX(2) tormat(5) /7 stmt \
LEX(2) format(6) / s tnt \
LEX(2) format(7) / stmt \
NEXT _STMT / stmt \

/ \
epilogue / RETURN \
epilogue / RETURN \

Reductions for the Tape Language

(Error Ojlagnostic Actlons Omitted)

Massachusetts Institute of Technol ogy

and Honeywell}

Information Systems Inc.

i 1 MTB- 093
! reduction_compiler | MPM SYSTEM PROGRAMMERS * SUPPLEMENT
i {

Page 24

9. Action Field - Qiagnosing fcrors

. Besjides transfating all 1legal toxen phrases in the input,
most transtators jdentify and report any 1liiegal phrases which
may be present. An <any-tfoken> reduction can be used at the end
ot a group of reductions to identify any non-null {oken phrase
which does not match one of the preceding reductions In the
group. Also, speclfic reductions can be provided to ldentify
predictable errors, such as wmlssing or itltegal punctuation,
invalid keywords or names in othernise fegal statements, etc. In
addition, semantic subroutines may Identify Inconsistent or
invalid Input as the transiation progresses.

When errors are identjified, the user must be notifjed of the
type of error which has occurred, and the focation of the error
in the (nput (it known). rdc provides two facijilities for
printing error messages? the ERROR Internal subroutine; and the
fex_error_ external procedure. :

9.1 Error Routines - ERROR(grror number)

The ERROR semantic subroutine can be used by a translator to
print error messages. The procedure is invoked from the actlon
field of a reduction byt

ERROR (grcor numper)

or from one of the transiator®s semantic subroutines by

call ERROR(error number) s

In order to use the ERROR subroutine, the translator must
supply an error_control_tablie. error npamber Is an integer [ndex
into error_controt_table, which is an internal! statlc array of
structures declared by the transiator in the maln procedure of
the transtiator. A declaration for a typical error_controi_table
iIs shown belowe.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Ince.

r

MTB=(9o3 } {
MPM SYSTEM PROGRAMMERS® SUPPLEMENT I reduction_compiier |
! !

06720774
Page 25

dci 1 error_controi_table (2) aligred internal static,

2 severity fixed bin(i1?7) unaligned init (2,3),
2 Soutput_stmt bit(1) unatigned Inlt (“0"b, *“1*Db),
2 message char(100) varying init (N

“The reduction source segment does not contaln any
val id reductions.", ‘

“The reductijon labei{ *~3° is invalide This labetl
has been ignored.*);
2 brief_message char(24) varying init (
“No valid reductions.*,
“Label *Ta' invalid.")

Each elerment of the error_control_table array is a structure
nhich describes one error message. The structure contains? a
severijity level for the error; a switch ahlch specities whether
the statement containing the *current”™ token phrase should be
output after the error message; a long form of the error message
text; and a brijef form of the error message text. The
error_control_table must be a one-dinensional array, but its
upper bound may be declared to sult the needs ot the transiator,

Note that statement descriptors must be present in order to
put the statement containing the *"current*® token phrase iInto the
error message. Therefore, the Soutput_stmt switch has no effect
unjess the translator has requested that lex_string_ generate
statement descriptors. (See the writeup on lex_string_ to t{tearn
how to request statement descriptors.)

The text of the error message is an joa_ control string.
Therefore, atthough the tengths of the massage and brief_message
error message texts may be declared according to the needs of the
transliator, these lengths must not be longer than 25 characters.
Up to three occurrences of the [oa_ controlf characters, ~a, may
appear in the message or brief_message character string. The
val ue of the *“current™ token wilt replace these control
characters In the printed error message. Any number of the [oa_
control characters, "=, “/5 1y "Xy "Ry "84 and ==, may appear In
the error message text.

The cholce of the fong message text or the brlef text for use
in the error message is controlied by the value of a variables
SERROR_CONTROL, which Is declared by rdc in the maln procedure of
the transiator. SERROR_CONTROL is a bit string of length 2,
which 1Is initiatlzed with a vatue of "00"b. Table 1 shows hown
these two bits are Interpreted.

c Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlion Systems Inc.

! i MTB8~ 093
} reduction_compliler ! MPM SYSTEM PROGRAMMERS * SUPPLEMENT
1 i

Page 26

Tabte 1! Interpretation of SERROR_CONTROL Bits

SERROR_CONTROL neaning

*090™b the first time a particular error occursy the
fong message text s wused in the error
message) the short message text Is used in
any subsequent occurrences of that error.

*“10"b the fong message text [s always used iIn the
error message.)

*“11*b the long message text Is always used in the
error message. (equivatlent to "10"b)

*01"b the brief message text is afways used in the

error messagee.

The error messages which are printed have the form shown
beton?

prefix error number», SEVERITY seyerity IN STATEMENT m OF LINE p
lext of error message

SOURCE?!
statement contalning “current” tokep phrase

The value of pretlx Is controlled by the severity flevel
associated with the error message, as shown in Table 2.

The statement and fine numbers in the message are obtalined
from the token descriptor of the *“currext” token or from the
statement descriptor of the statement containing the "current®
token,

“IN STATEMENT m OF LINE n*™ only appears in the error message
it statement descriptors have been provided by lex_string_. n Is
the line number on which the statement containing the “current®
token beginsy and g Is a number which identifles which statement
in 1ine p was in error, if more that one statement appears in
}ine De It line o contains only one statement, then
“STATEMENY g OF™ is omitted from the error message.

It no statement descriptors are available, then
"“STATEMENT [OF" 1Is omitted from the message, and o is the line
number on which the “current” token appears. If Pthis_token |[s
null to indicate that the *current" token phrase is nuli, then
“IN STATEMENT @ OF LINE pn* Is omitted attogether.

¢ Copyright 1974, Massachusetts Institute 6f Technol ogy
and Honeywell Informatjion Systems Ince

ﬁ

‘D

r

MTB-093 ! T
MPM SYSTEM PROGRAMMERS® SUPPLEMENT } reduction_compiler 1
! 1

06/720/74
Page 27

Table 21 Relatjonship of Preflx to Error Severlty

Sey pretix explanation

0 COMMENT The error message is a comment.

i WARNING The error message wa~ns that a possibie error
has been detected. The translation will
stitl proceed, however,

2 ERROR The error message wa~ns that a probable error
has been detectede. However, the error is
non-fatal and the transiation wil{ proceed.

3 FATAL ERROR The error message wWwarns that a fatal error

has been detected. Processing of the input
will continue to diagnose further errors, but
no transiation will oe per formed.
4 TRANSLATOR ERROR

The error message wa~ns that an error has
been detected In fthe operat ion ot the
transiator, No translation will be
performed.

It Soutput_stmt is ofty, then ™"SOURCE®™ and the statement
containing the *current* token phrase are omitted from the error
message. It thlis statement has been printed in a previous error
message, then “SOURCE®" and the statement are omitted from this
error message.

rdc declares two other variables In the main procedure of
the ftranstator which are used by the ERROR subroutines.
SERROR_PRINTED 1s an array of bitsy, with one bit per message In
the error_control_table. All bits in tahe array are initially
turned off when the transiation begins. Whenever an error
message Is printed, SERROR_PRINTEO(error number) is turned one
This procedure allows ERROR to detect whan subsequent occurrences
of the error occury, so0o that SERROR_CONTROL = *008"b can be
implemented.

¢ Copyrlight 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Inc.

{ ! MT8- 093
! reduction_compiler | MPM SYSTEM PROGRAMMERS® SUPPLEMENT
! |

Page 28

The second varjabie dectared by rdc in the main procedure of
the translator is MERROR_SEVERITY. This 1Is a fixed bIn(i7)
Integer which 1is 1Initiallzed to zerd, and which is used to
maintain the severlity of the highest-severity error printed
during the translation, The transtator may reference the value
of this variabte at the end of the transtation to return this
highest-severity to its caller, or to determine when to abort the
transliation due to a fatal error.

The ERROR semantic subroutine and declarations for

SERROR_CONTROL . SERROR_PRINTED, and MERROR_SEVERITY are
automatically Included In every transiator which specifies this
subroutine in one or more of its reduction action fieids. ERROR

accesses the appropriate vatues In the error_control_table, and
passes these values and the polinters to the "current® token and
Its statement descriptor to the lex_error_ external procedure.
lex_error_ invokes ioa_ to format the error message, and outputs
the message on the error_output I/0 stream.

9.2 Error Routings - tex_error_(ese)

Although the ERROR procedure descrised above |[s very easy to
use, the cost of 1its simplicity comes iIn its inability to
generate highly-speclfic error messagas containing several
different varjable information filelds. ERROR ondly aliows the
character string value of the "current"™ token to be included in
the error message.

When more flexlbie error messages are requijred, the
transtator can call the lex_error_ procedure, Itself, passing
fex_error_ iInformatlon from the error_control_table (or writing

messages not included in the error_control_table), pointers to
the statement descriptor for the statement containing the
“current” token phrase, and arguments to be substituted Iinto the
error message text, according to joa_ controtl charac ters. Refer
to the wrlteup on the {ex_error_ external procedure for more
information. '

Care should be taken to pass lex_error_ elements of the
error_control_table by vatue, rather than by reference. This
will enable the PL/I compiler to treat the error_control_table as
a constant structure which <can be stored In the text of the
transtator, rather than In its {inkage section,
error_control_table elements can be passad to lex_error_ by value
by surrounding the retferences to these elements by parentheses in
the cail to lex_error_.

¢ Copyright 1974, Massachusetts Instlitute of Technol ogy
and Honeywell Information Systems Inc.

ﬂ

MT8-093
MPM SYSTEM PROGRAMMERS®

Copyright 1974,

BEGIN
stmt

/ Volume : <volume_id>

Read 3
Write 3§
File <positive_Integer>

NN N

Records 1t
Format @
<any-token>
<no-token>

NN\

vol
’
y 9track 3
sy 7track 3
<any-token>
<no-token>
numbers
/ <positive_integer>
/ <any-token>
/ <no-token>
punct
/
/
/ <any=-token>
/ <no-token>
format
F 3
FB 3
FBS 3
Vv 3
VB 3
vBs 3
u s
<any=-token>
<no-token>

NN

NNNNNSNNNNSN

end
<any~-token>
<no-token>

Figure 10 Reductions

Massachusetts
and Honeywell

SUPPLEMENT

/

/
/
5/

NN SNNNNNNN. NNN N NN N NNNNN NNNN

~N N

for

H {
! reduction_compiter |

06720774
Page 29

LEX(2) [volume=t oken_value]
[track = 9] LEX /7 vol \
LEX(2) (mode="r"} / stmt \
LEX(2) [mode="w"] / stmt \
LEX [file_no=to<en.Nvaluel
LEX(2) / stmt \
LEX(2) / numbers\
LEX(2) / tormat \
ERRIR (1) NEXT_STMT/ s tmt \
perform_1lo / end \
LEX / stmt \
LEX(3) / s tmt \
{track = 7)) LEX(3)/ stmt \
ERROR (7) NEXT_STMT/ stmt \
ERRIR (3) / end \
set_record_no LEX / punct \
ERRIR(2) LEX / punct \
ERRIR(3) / end \
LEX / numbers\
LEX / s tmt \
ERRIR (4) LEX / numbers\
ERROR(3) ' / end \
LEX(2) format(l) / s tmt \
LEX(2) format(2) / stmt A\
LEX(2) format(3) / s tmt \
LEX(2) ftormatisy) / s tmt \
LEX(2) format(5) / s tmt \
LEX(2) format(se) / stmt \
LEX(2) format(7) / s tmt \
ERRIR(5) NEXT_STMT/ s tmt \
ERRIR (3) / 2nd \
ERRIR(6) epilogue /7 RETURN \
epli ogue / RETURN \
the Tape Language

Instlitute of Technol ogy
Information Systems Inc.

{ ! MTB~- 093
! reduction_compliler | MPM SYSTEM PROGRAMMERS® SUPPLEMENT
i §

Page 30

10. Sample Reductions #3

Figure 10 shons the reductions for our tape language,
including error diagnostic calls to the ERROR subroutine. The
declaration of the error_control_table to be used with these
reductions is shown In Figure 11.

dci 1 error_control_table (7) inte~nail static,
2 severity fixed bin{(i7) unal igned
init (31 21 3’ 29 3, 21 2),
2 Soutput_stmt bit(1) unatligied
lnl f (”1"b, 'lillb, llolﬁb" ..1'.b ’ llillb’ llill b’ ﬂi llb) ’
2 message chari{70) varying inlt(
“An unknown statement has been encountered.”,
"*=a' Is an invalid record number.",
“Transfator input ends wlith an Incomplete
statement.*,
. witat is invalid punctuation in a list of record
numbers.*,
"*=a?’ {s an invalid record format."”,
“More input was encountered when the end of
transtator input was expected.",
A bad track specification was given in a Volume
statement. 9track has been assumed."),
2 briet_message char(28) varying Init(
“Unknown statement.',

“Bad record number *"a‘.",

“Incomplete statement.',
“Invalid punctuation “~a’'.",
“Invalid record format *~a*.*',

“Too much Input.*,
*8ad track [n Volume.');}

Figure 113 error_controi_table For Reductlions in Figure 10

11. Ihe Reduyction Stack

Often a tanguage to be translated contains syntactic
constructs which are simitar in form, 2ut which differ In thelir
use of keywords, types of values, efc. The BNF for one such
fanguage s shown in Flgure 12. The language accepts three
different types of statements, each of which Includes a 1ist of
values. '

¢ Copyright 1974, Massachusetts Institute of Technoi ogy
and Honeywell Information Systems Inc.

~

MTB- 093 ! !

MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! reduction_compiler 1
| . §
06/20/74
Page 31
<stmt> 113= Name ¢ <name>[, <name>l.es 3

! Attrlbute t <attr>[, <attr>lee.
! Value t <number>[, <yumber>)...

-e we

<attr> 113= fixed ! float | decinal § binary

Flggre 121 BNF for a Value Space Language

The tists in this language al! have the same syntax, and
differ only in the keyword at the beginning of the statement and
in the type of values included in the list,. This suggests that
the tist punctuation for all three types of iists might be
handled by a common group of reductions It there were some way to
Invoke the group of reductions as a subrautine which would return
to some pre-defined reduction after processing the punctuation
mar-ks In the [Iist.

rdc implements such a reduction subroutine facility by
providing a reduction stack. This stack contalins the labels of
the reductlons which are to be returned to when a reductlon
subroutine has completed its processinge. Appropriate
next-reduction keywords are provided to iIndicate that the
reduction Identified by the {label at the top of the reduction
stack should be the next reduction. Action subroutines are
provided by rdc for pushing a reduction onto the stack, and jater
poppling [t otf the stacke These facilitlies are all described In
the next tew sections.

11.1 Action Eleld - PUSH(label)

The PUSH action subroutine can be used In the action field
ot a reduction to push the réduction jldentified by label onto the
reductijion stack., PUSH is an Internal procedure included
automatically by rdc In any transiator whilch uses the PUSHA action
routine.

It pushing the reduction onto the stack woufjd cause a stack
overfionw, then the PUSH subroutine writes a special severity 4
error (error number 0) through lex_error_, and califs cu_3%cl to
Iinvoke a new tevel of the command procassor. The start command
cannot be Issued after such a stack overflow has occurred, but
the transiator maintenance personnel can perform debugging
operations from the new level of the command processor.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywel! Information Systems Ince

i { MTB- 093
| reduction_compiler | MPM SYSTEM PROGRAMMERS® SUPPLEMENT
{ t

Page 32

11.2 Attribute Declaratiop - MAX_DEPTH 1 \

Normally, enough storage s declared {at 1 word per
reduction) for 10 reductlons to be pushed onto the reduction
stacke The transiator may increase or decrease the amount of
storage which 1is reserved to meet the needs of Its reduction
subroutine strategy. The size of the reduction stack can be set
by using the MAX_DEPTH attribute declaration, which has the forms

MAX_DEPTH p \

where p is an integer, such that 0 <3 < 10000, specifyling the
max imum number of reductions which can be pushed onto the
reduction stack at any given time. If a MAX_DEPTH at tribute
declaration iIs glven, |t must appear before any of the reductions
In the Input to rdc.

11.3 Actiop Eleld - POP

The POP action routine can be used in the action fleild to
pop the top reduction off of the reduction stack. POP [s a
buiit-in action routine supplied by rdc. It POP Is Iinvoked when
there are no reductions on the stacky, then no popping operation
Is performedy, and no error Is reported elther.

11.4 Next-Reduyctlon Fleld - STACK

The STACK keyword may be used in the next-reduction field of
a8 reduction to transfer to the reduction on top of the reduction
stack:,. If the reduction stack Is empty shen the STACK keyword is
specitfied, then a blank next-reduction fleld is assumed and the
reduction following the one contalning the STACK keyword Is used
in the next comparison.

11.5 Next-Reductlion Eleld - STACK_POP

Probably the most wuseful method of returning from a
reduction subroutine Is to transfer to the reductlon on top of
the reduction stack, nhile at the same time popping that
reduction from the stack. This combination ot the STACK and POP
operations c¢an be performed by specifying the STACK_POP keyword
In the next-reductjon fieid of a reduction. As with STACK, if
the reduction stack is empty, then a blank next reductlon field
Is assumed and the reduction following the one containing
STACK_POP is used in the next comparison.

¢ Copyright 1974, Massachusetts Institute of Technof ogy
and Honeywel! Information Systems Inc.

MT8- 093

! reduction_compller

06/20/774
Page 33

name s
attr
values
stmt
RETJRN

punc t
STACK_POP
names
punc t
RETURN

punc t
punc t
punct
punct
STACK_POP
attr
punc t
RETURN

punc t
STACK_POP
values
punct
RETURN

STACK_POP
STACK_POP
STACK_POP
RETURN

MPM SYSTEM PROGRAMMERS®™ SUPPLEMENT
§
MAX_DEPTH 2 \
BEGIN
stmt
/ Name ¢ / LEX(2) PUSH(stmt) /
/ Attribute ¢ / LEX(2) PUSH(stmt) /
/ Value ¢ / LEX(2) PUSH(stmt) /
/ <any-token> / ERROR(1) NEXT_STNT /
/ <no-token> / 7/
names
/ <name> / set_name LEX PUSH{names) /
/7 3 / ERROR(2) LEX /
/ / ERROR(2) LEX : /
/ <any-token> / ERROR(3) LEX PUSH(names) 7/
/ <no-token»> / ERROR(L4) /
atte
/ tixed / attr(1) LEX PJSH(attr) /
/ float / attr(2) LEX PJSH(attr) /
/ decimal / attr{3) LEX PJSH{attr) /
/ binary / attr(4) LEX PUSH({attr) /
/7 3 / ERROR{2) LEX /
/ / ERROR(2) LEX /
/ <any=-token> / ERROR(5) LEX PUSH(attr)
/ <no-token> / ERROR(4) /
values
/ <decimal_number>
/ set_num LEX PUSH(values)/
/5 / ERROR(2) LEX /
/ / ERROR(2) LEX /
/ <any-token> / ERROR(H) LEX PUSH{values)/
/ <no-token> / ERROR(4) /
punct
/7 3 / LEX POP /
/ / LEX /
/ <any=-token> / ERROR(7) NEXT_STNT PQP /
/ <no-token> / ERROR{&4) /
Figure 13: Reductions for Vajlue Space Language

C

Copyright 1974,

and Honeywel!

Massachusetts Institute of Technol ogy
Information Systems Inc.

VA AW A g

Pl A A AV A A A 4 P AN AR AW A 4

PV AP AW 4V 4

Pl A A

1 { MTB=- 093
! reduction_compiler | MPM SYSTEM PROGRAMMERS " SUPPLEMENT
l I

Page 34

11.6 3ample Reductions #4

The reductions for the value space tanguage of Flgure 12 are
shown In Figure 13, In these reductions, <number> is a retative
syntax functlon which converts a cha~acter-format number fto
floating decimal, and stores the result in a semantic value
structure attached to the number®s token descriptor.

The error messages generated by the reductions [n Figure 13
may be summar ized as follows? ERROR(1) - severity 2,
unrecognized statement; ERROR(2) - seve~jty 24 unexpected *~“a*
punctuation mark Iin a name {ist] ERROR{3) - severity 2, invalid
name "~3a® in a Name fist) ERROR(4) ~ severjity 3, incomplete
statement; ERROR(5) - severity 2y Invalid attribute *"a*® In an
Attribute listy ERROR(6) - severity 2, invalid number *"a® in a
Value tist; and ERROR(7) - severity 3, unexpected *"a* when a
punctuation mark was expected in a name list.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatjon Systems Inc.

MTB- 093 ! !

MPM SYSTEM PROGRAMMERS® SUPPLEMENT | reduction_compiler 1|
{
r
06720774
Page 35
Table 32 Elements of the Reduction Language
Attribute Declarations
MAX_DEPTH n \
Reduction Statements
jabels / syntax / actions / next-reduction \
BEGIN / / / \
/ / / \
tabel
fabel2 7/ / / \
/ absolute spec 7/ / \
/ <relative_fcn> / / \
/ / / \
r / <no=-token> / / \
/ <any-token> /7 / \
/ <name> / / \
/ <decimal-integer>
/ / \
/ <quoted-string>/ / \
/ <BS»> / / \
/ / semant (ee) / \
/ /7 (var=*"1">] / \
/ / / \
/ / LEX / \
/ / LEX (n) / \
/ /7 NEXT_STMT / \
/ / ERROR{N) / \
/ / PUSH(lab2t) / \
/ / POP / \
/ / / label \
/ / / \
/ / / RETURN \
/ / / STACK \
/ / / STACK_POP \

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Inc. (END)

f,

MTB- 093 1 T
MPM SYSTEM PROGRAMMERS® SUPPLEMENT I tex_string_ |
, i

Internal Interface
Administrative/User Ring
06/19/74

Namet lex_string_

fex_string_ provides a facllity for parsing an ASCII
character string into tokens (character strings dejimited by
break characters) and statements (groups of tokens). It supports
the parsing of comments and aquoted strings. It parses an entire
character string during one invocation, creating a chain of
descripftors for the tokens and statements [n an area. The cost
per foken of lex_string_ is significantly lower than that of
parse_tile_ because the overhead of calling parse_file_ to obtain
each token Is eliminated. It is reconmended tor translators
which deal with moderate to large amounts of input.

The descriptors generated when lex_string__ parses a
character string can be used as input to translators generated by
the reduction_compiler command, as well as In other applications.
In addition, the informatlon In the statement and token
descripfors can be used In error messages printed by the
lex_error_ ftacility.

Reter to the writeups for the reduction_compiler and
lex_error_ for detalls on the use of these facliiitles,

Entryt lex_string_$Iinit_lex_delinms

This entry constructs two character strings from the set of
break characters and comment, quoting, and statement delimiters?
one string contains the ¢tirst character of every defimiter or
break character deflned by the language to be parsed; the second
string contains a character of control information for each
character iIn the first string. These two character strings form
the break tables which lex_string_ uses to parse an [nput string.
It is intended that these two (delimiter and controi) character
strings be internal static variabies of the program which calils
lex_string_, and that they be initiaiized only once per process.
They can then be used in successive calls to lex_string_$Slex, 2as
described below.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Ince

! l MTB-~ 093
t lex_string_ ! MPM SYSTEM PROGRAMMERS* SUPPLEMENT
!

Page 2

Usage

decliare tex_string_sinit_tex_dellms entry (char(*}), char(*),
char{(*), char(*), char{*), bit(*), char{®) varying aligned,
char(*) varying aligned, char({*) varying atigned, char(*) varyving
aligned);

call fex_string_8Sinit_iex_delims (quote_open, quote_close,
comment_open, comment_close, statement_deliimy, Sinlt, break_chars,
ignored_break_chars, lex_delims, lex_controi_chars);

1) quote_open Ils the character string detlimiter which is to
indicate the beginning (or opening) of a
quoted string., It may be wup to four
characters iIn flength. It It is a nult
character string, than Juoted str ings are not
supported during tne parsing of a character
stringe. {(Input)

2) quote_close is the character string detlimiter which is to
Iindicate the ending (or closing) of a aquoted
string, It may be the same char acter string
as quote_opensy and may be ud to four
characters In tength. {(Input)

3) comment_open is the character string delimiter which Is to
Indicate the opening of a comment. It may be
up to four characters in length. It it Is a
nui! character stringy, then comments are not
supported during tnhe parsing ot a character
string. (Input)

4) comment_close is the character string delimiter which js to
Indicate the closing of a comment. It may be
the same character string as comment_open,
and may be up to four characters n tength.
({Input)

5) statement_deililim is the character string delimiter which is to
Indicate the closing of a statement. It may
be up to four characters in length., If it Is
a nutl character string, then statements are
not delimited during the parsing of a
character stringe. {Input)

¢ Copyright 1974, Massachusetts Instltute of Technol ogy
' and Honeywell Information Systems Inc.

ﬂ

»

(D

MTB- 093

MPM SYSTEM PROGRAMMERS® SUPPLEMENT { ﬂex;sfrlng_ §
I !

06/720/74

Page 3

6) Sinit 1s a bit string which controts the creation

of statement descriptorsy, and the creation of
token descriptors for quoting delimiters.
The bit string conslists of two bits In the
order |jsted below. (Input)

Ssuppress_quot ing_dellms

is "1"b 1f token descriptors for the gquote
opening and closing delimiters of a quoted
string are to be suppressede. A ftoken
descriptor is stitl created for the guoted
string itself, and the quoted_string switch

In this descriptor 1is turned oN e It
Ssuppress_quoting_delims is *“0"b, then token
descriptors are returned for the quote

opening and closing del jmiters, as well as
for the quoted stringe.

Ssuppress_stmt_del ims

7) break_chars

is "1"b if the token descriptor for a
statement detimiter is to be suppressed. The
end_of_stmt switch in the descriptor of the
token which precedes the statement delimiter

is turned on, inst ead. It
Ssuppress_stmt_detims Is “0"b, then a token
descriptor Is returned for a statement

delimiter, and the end_of_stmt switch in this
descriptor is turned on.

is a8 character string containing all of the
characters which may be wused to delimit
tokens. The string may include characters
used also In the juotings, comment, or
statement delimiters, and should include any
ASCII control characters which are to be
treated as delimiters, (Input)

8) lgnored_break_chars

¢ Copyright 1974,

is a character string containing all ot the
break_chars which may be wused to delimit
tokens, but which are not tokens themselves,
No token descripto~s are created tor these
characters, {Input)

Massachusetts Institute of Technol ogy
and Honeywel{ Information Systems Inc.

l ! MYB8~- 093

! lex_string_ | MPM SYSTEM PROGRAMMERS * SUPPLEMENT

1 |

Page L

9) lex_delims is an output character string conmtaining atl
of the delimiters which lex_string_ wiit use
to parse an input string. This string |Is
constructed by the ivit_lex_dellmrs entry from
the preceding argunents, It must be long

enough to contain all ot the break_chars,
plus the first character of the quote_open
delimiter, the comment_open del imiter, and
the statement_delin detimiter, plus 30

additional characters. This {ength wiil not
exceed 128 characters, the number of
characters In the ASCII char acter set.
(Output)

10) lex_control_chars
1s an output character string containing one
character of control information for each
character in lex_delims. This string is also
constructed by irit _lex_delimns from the
preceding arguments. It must be as tong as
tex_delims. (Qutput)

Entryt tlex_string_slex

This entry parses an input st~Ing, according to the
del imliters, break characters, and controi information given as
its arguments. The input string conslists of two partst the
tirst part Is a set of characters which are to be Ighored by the
parser, except tor the counting of llves; the sec ond part are
the characters to be parsed. It Is necessary to count tines in
the part which is otherwise lgnored so that accurate (ine numbers
can be stored in the token and statement descriptors for the
parsed section of the string.

¢ Copyright 1974, Massachusetts Instltute of Technol ogy
and Honeywell Information Systems Ince.

“N

MT8-093 $:

MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! lex_string_
{
06/20/74
Page 5
Usage

declare lex_string_s$'’ex entry (ptr, fixea bin(21), fixed
bin(21), ptr, bit(*), char{(*), char(*), char(*), char(*),
char{(*), char(¥*) varying allgned, char (*) varying aligned,
char(*) varying allgned, char{(*) varying aligned, ptr, ptr, fixed
bin(35))}

call fex_string_$tex entry (Pinputy, Linput, Lignored_input,

Parea, Stex, aquote_open, quote_close, comment_open,
comment_closey, statement_detlim, break_chars, ignored_break_chars,
lex_delinms, tex_controi_chars, Pfirst_stmt_desc,

Pfirst_token_desc, code)}

1) Pinput is a pointer to the string to be parsed.
(Input) '
2) Linput is the fength (in characters) of the second

part of the Input string, the part which 1is
actually to be parsed. (Input)

3) Lignored_Iinput is the length (in characters) of the first
part of the input string, the part which is
lgnored except for IJine count ing. This
ftength may be 0 it none of the 1iaput
characters are to be ignored. (I nput)

4) Parea Is a pointer to an area format ted by the
area_ subroutine. (Input)

5) Slex Is a blt string whicn controls the creatlon
of statement and coment descriptors, and the
handl ing ot doubled Juotes within a quoted
string. The bit string consists of three
bits In the order listed below. (Input)

Sstatement_desc 1Is "™1"b 1f statement descriptors are to be
created along with the token descriptors. It
Sstatement_desc s “0"by, or if the statement
delimiter Is a3 nult character string, then no
statement descriptors are created.

c Copyrlight 1974, Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Ince

!
1t
i

!
ex_string_ 1
h i

Page 6

6)

13)

14)

15)

C

Scomment_desc

MTB-093
MPM SYSTEM PROGRAMMERS * SUPPLEMENT

is "1¥b it comment descriptors are fto be
created for any commnents which appear in the
input string. If Scomment_desc is *0*b, {f
comment_open is a null character string, or
if no statement descriptors are beling
created, then no comment descriptors are
created.

Sretain_doubled_quotes

is "1“b [f doubled Qquote_close delimiters
which appear within 3 quoted string are to be
retained. If Sretain_doubled_quotes is “0"b,
then a quoted string containing doubled
quote_cliose dellmiters is copled iInto the
area, and the doubled gquote_close are changed
t0 single quote_close delinmiters.

Seqdafe_comment_close_sfmf_dellm

- 12)

lex_delims

is "1*b it the comment _close and
statement_delim character strings are the
samey and it the closing of a comment is to
be treated as the e3ding of the statement
containing the comment, It could be used
when parsing line-oriented 1languages which
have only one statement per tine and one
comment per statement.

are as above, (Input)

Is the character string init ialized by
lex_string_8$init_lex_delims. (Input)

lex_control_chars

is the character string initiatized by
lex_string_g$init_lex_delims. (Input)

Pfilrst_stmt_desc

Copyright 1974,

is a pointer to the tirst in the chain of
statement descriptors. Thls Is a nuil
pointer on return if no statement descriptors
have been createds (Qutput)

Massachusetts Institute of Technol ogy
and Honeyweil Information Systems Ince.

r

MTB- 093 o
MPM SYSTEM PROGRAMMERS® SUPPLEMENT | 1ex_string_ 1

06720774
Page 7

16) Ptirst_token_desc
ils a pointer to the first In the chaln of
token descriptors.e This is a null pointer on

return |f no tokens were found iIn the input
string. {Output)

17) code is one of the following status codes.

0 the parsing was completed success fully.

error_table_$zero_length_seg
no tokens were found In the input string.

error_table_s$no_stmt_detim
the Iinput string did not end with a statement

detimjiter, when statement delimjters were
used in the parsinge.

error_table_sunbaianced_quotes
the 1Input string ended with a quoted string
which was not terminated by a quote_close
delimiter.

Notes

Any character may be wused in the gquoting, comment, and
statement delimiter character strings, including such characters
as new {ine and the space character,

A quoted strling is deflned in the PL/I sensey, as a string of
characters which is treated as a single token, even though some
of the characters may be delimliters or break characters. The
string must begin with a quote_open delimiter, and must end With
2 quote_close delimiter. Two consecutive quote_close delimiters
may be wused to represent a quote_ciose dellmiter within the
quoted string. lex_string_g$lex provides the option of retaining
any doubled gquote_close delimlters in the qQquoted string token, or
of copying the quoted string Into the area, changing double
quote_close to single quote_close delimiters, and treating the
modified copy as the quoted string token. Swiftches In the token

descriptor of a quoted string are turned on3 to iIndicate that
the token was originally a3 quoted string; to Iindicate whether
any quote_close delimiters appear within the quoted s tring; and

to Indicate whether doubled quote_close delimiters have been
retained in the token.

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywel |l Information Systems Ince.

} { MT8-093
| lex_string_ | MPM SYSTEM PROGRAMMERS * SUPPLEMENT
1 !

Page 8

Statements are defined as groups ot tokens which are
terminated by a statement delimiter tocene. jex_string_3lex can
optionafly return a token descriptor for the statement delimiter
or it c¢an suppress the statement deliniter®*s token descriptor.
It aiways turns on the end_of_stmt switch in the final token
descriptor of each statement, even if the statement delimiter®s
token descriptor has been suppresseds Also, it can optionajly
return a statement descriptor which points to the descriptors for
Tt he tirst and tast tokens of a statement, contalns a pointer to
and the tength of the statement, and describes varlous other
characteristics of the statement. These descriptors are
described In the next section.

Comments are defined in the PL/I sense, as a string of
characters which begin with a comment_ppen delimiter, and which
end with a comment_close delimiter. Comments which appear In the
input string act as breaks between tokens., fex_string_3lex can
optionally create descriptors for each comment which appears in a
statement. These descriptors are chained off of the statement
descriptor for that statement. Switches are set in each comment
descriptor of a given sftatement to indicate whether the comment
appears before any of the tokens In that statement, and whether
any tokens intervene between this comment and any previous
comments in that statement.

lex_string_ uses the smart_alloc_ subroutine to perform
altocations in the PL/I area. Hhen smart_alloc_ signals the area
condition, It passes an [nformation structure which describes the
allocation which failed, and which c¢can be used to cause the
ailfocation to be reattempted Iin another area. Refer to the
writeup on smart_atloc_ for more detajts.

Descriptors

If lex_string_tlex were invoked to parse the [nput shown in
Figure 1, using standard PL/L parsing c¢anventions, then tokens
and token descriptors created by lex_st~ing_ would have the form
shown in Figure 2.

Votumet 700923

Write)

File 43 /7% Process 4th file on the tape. x/
/% END ¥/

Figure 1t Samplie Input to lex_string_

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeyweli Information Systems Inc.

MTB8-093 H |

MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! 1ex_string_ 1
1 !
06/20/74
Page 9
~=>1 $==>1 dm=>| Q==>] 1==>1 Q==>] fe=>1 ==>i 1==>1 1
H § <=~} {<~=} { <=~} § <==| j <=~} j<==~} j<~~1} ! <—=1 H
N R T R T T I T A T I e
) 1) 1 ! i !) !
v v v v v v v v v
Volume H 70092 3 Hrite H File 4 4

Figure 2% Input Tokens and thelr Descriptors

It statement descriptors were being created by lex_string_, then
the output would have the form shown In Flgure 3.

-=>] j==>1 j==>1 {==>1 j==>} {~=>1 j==>1 jm=>1 |==>4 H
] j<c-=} €=} | <=~ ==} <=~} 1€==} f¢==-1 1 <= H
1__1 I | i { { H } H H H 1__1 {1 ! t

H { '
-V v v
Volume H

Figure 3: Tokens, Token Descriptors, aad Statement Descriptors

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywelil Informatjion Systems Inc.

fex_str

i
ing_ ! MPM SYSTEM PROGRAMMERS *
!

Page 10

MTB-093
SUPPLEMENT

Betow is 3 decliaration for the token descriptor struc ture.

1)

2)

3)

4)

S)

6)

dec!
1 to
2

NN NNN

Ptok

are

ken aligned based (Ptoken),
groupl unatigned,

3 version fixed bin(17),

3 size fixed bin(17),

Pnext ptr unal,

Plast ptr unat,

Pvalue ptr unal,

Lvatue fixed bin(18),

Pstmt ptr unat,

Psemant ptr unal,

group?2 unaligned,

3 Itoken_in_stmt fixed bin(17),
3 tine_no fixed bin(17),

3 Nvatue fixed bin(35),

3 S,

end_of_stmt bit(1l),
quoted_string bit{1),
quotes_Iin_string bit(1),
quotes_doubled bit(1),
pad2 bit(32),

en ptry,

LR

token_value char({token.Lvalue) based (token.Pval ue

)3

version is the version number of the structure. The
structure shown above |[s versjion 1.

slze Is the size of the structure, Iin words.

Pnext Is a pointer to the descriptor for the next
token In the input., It this Is the last
token descriptory, than the pointer is nult.

Plast is a3 pointer to the descriptor for the
previous token In the [nput. If this Is the
first token descriptor, then the pointer |is
null.

Pvalue is a pointer to the token character string.

Lvalue is the length of the token charac ter string,
In characters.

Copyright 1974, Massachusetts Institute of Technol ogy

and Honeywell! Information Systems Inc.

MT8-093

MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! lex_string_ |
— !

06/20/74

Page 11

7) Pstmt is a pointer to the statement descriptor for

8)

9)

10)

11)

12)

13)

14)

15)

16)

17

C

Psemant

Itoken_in_stmt

line_no

Nvalue

end_of_stmt

quoted_string

the statement which contains this token, It
statement descriptors are not being created,
then this pointer is null.

Is a pointer avallable for Jse by
fex_string_*s caller, It might be used to
chaln a structure defining the semantic value
of the token to the token®'s descriptor.

Is the position of the token with respect to
the other tokens In the statement containing
this token. It no statement del imiters are
belng wused In the 2arsing, then this Is the
position of the token with respect to all
other tokens in the input.

is the lilne_no on which this token appearse.

ls 3 number avallable for use by
lex_string_"s caitler. It might pe set fo the
numeric value of a token which is the
character string representation of an
Integer.

is "1"b it this is the fast token of a
statement.

is "“1*b if thils token appeared In the Input
as a quoted string.

quotes_Iin_string

quotes_doubled

pad2

Ptoken

Copyright 1974,

Is "“1"b Is quote_close delimiters appear
Wwithin this quoted string token.

is "1"b It quote_close <delimiters which
appear In a aquoted string token are still
represented by doubled quote_close
delimiters, rather than having been converted
to single quote_ctose deiimiters,

is available for use by lex_string_"s calier,

is a3 pointer to a token descriptor.

Massachusetts Institute of Technol ogy
and Honeywell Information Systems Ince.

i H
! tex_string_

MPM SYSTEM
l H '

Page 12

18) token_value
token described Dby
pointed to by Ptokens

Statement descriptors are declared by th2

declare
1 stmt aligned based (Pstmt),

2 groupl unatigned,
3 version ftixed bin(17),
J size tixed bin(17),
Pnext ptr unat,
Plast ptr unal,
Pvalue ptr unal,
Lvatue fixed bin(18),
Ptirst_token ptr unal,
Ptast_token ptr unal,
Pcomments ptr unai,
Puser ptr unal,
group?2 unaligned,
Ntokens fixed bin(17),
fine_no fixed bIin(17),
Istmt_in_tine fixed bin(17),
semant_type flxed bin(17),
Sy
4 error_in_stmt bit(1),
4 output_in_err_msg bit(1),
4 pad bit(34),
Pstmt ptr,

NN NMNNDN

NN W W

MTB-093
PROGRAMMERS * SUPPLEMENT

is the character string representation of the

the token descriptor

structure shown belowe.

stmt_value char(stmt.Lvalue) based (stmt.Pvalue) j

1) version

Is the version number of this structure. The

structure declared asove Is version 1.

It this 1s the
this

2) slze s the size of this structure, In words.

3) Pnext is a poilnter to the statement descriptor for
the next statement.
descriptor for the last statement, then
pointer is nult.

4) Plast is a pointer to the

previous statement.

descriptor for the
It this is the

descriptor for the flrst statement, then the

pointer is null,

¢ Copyright 1974, Massachusetts Institute of Technol ogy
and Honeywell Information Systems Ince.

")

MT8- 093

MPM SYSTEM PROGRAMMERS® SUPPLEMENT {f tex_string_ |
1 !

06720774

Page 13

5) Pvalue is a pointer to the charac ter string

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

186)

C

Lvalue

Pfirst_token

Piast_token

Pcomments

Puser

Ntokens

iine_no

semant_type

error_In_stmt

representation of the statement as It appears
in the Input, excluding any leading new | ine
characters or leading comments.

ls the lJength of the charac ter string
represenation of the statement, in
characters,

is a pointer to the descriptor of the first
token In the statement.

Is a pointer to the descriptor of the Jast
token in the statement.

is a pointer to a chain of comment
descriptors associated with this statement.,

is a pointer available for Jse by
lex_string_"s caller,

is a count of the tocens in this statement,

is the Jine number o3 which the first token
of this statement appears in the inpute.

is a number avaliable for use by
fex_string_"s caller, It might be used to
classify the statemeat Dy its semantic type.

is "1*b 1f an error has occurred while
processing this statement. This switch is
never set by lex_string_y, but it 1Is set by
lex_error_ when a statement descriptor is
used to generate an error message.

output_in_err_msg

pad

Copyright 1974,

is "1"b If the statament has already oeen
output in another error message. This switch
is referenced and s2t by lex_error_ to
prevent a statement from being printed in
more than one error message.

is avallable for use by iex_string_°"s caller.,

Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Inc.

{ !
! fex_string_ |
1 1

Page 14

17) Pstmt

18) stmt_value

MTBO93
MPM SYSTEM PROGRAMMERS® SUPPLEMENT

is a pointer to a statement descriptor.

is the character string value of the
statement, as it appears in the input,
excludlng any teading newm {ine characters or
teading comments,

Comment descriptors are declared as follows.

declare

1 comment ailigned based (Pcomment),
2 groupl unaligned,
3 version ftixed bin(17),
3 size tixed bin(17),

NN N

Pnext ptr unal,

Plast ptr unal,
Pvalue ptr unal,
Lvalue tixed bin(18),
group2 unallgned,

3 line_no fixed bin(17),

3 S,

4 before_stmt bit(l),
4 contiguous bit(1),
4 pad bit(ie),

Pcomment ptr,

comment_value char(comment.Lvafue) based (comment.Pvalue)

1) version

2) slize

3) Pnext

4) Plast

¢ Copyright 1974,

Is the verslon numbe~ of this structure. The
structure decliared aj’sove is version 1.

is the size of thlis structure, in words.

is a pointer to the descriptor for the next
comment assoclated With the statement
containing this comment. If there are no
more comments associated with that statement,
then the po{nfer is wwuil.

is @ polnter to the descriptor for the
previous comment associated with the
statement containing this comment . It this
is the ftirst comment associated with the
statement, then the pointer is null.

Massachusetts Institute ot Technof ogy
and Honeywell Information Systems Inc.

MTB8-093

MPM SYSTEM PROGRAMMERS® SUPPLEMENT ! lex_string_ |
- |

06720774

Page 165

5) Pvalue Is a pointer to the character str ing vatlue of

6)

7)

8)

9)

10)

11)

12)

The
programs in

C

Lvalue

fine_no

before_stm¢t

contiguous

pad

Pcomment

comment_value

the comment string, 2xagtly as It appears |in
the input, excluding the comment_open and
comment_close delimjiters.

is the length of the character string value
of the comment, in characters.

Is the 1tine number on which the comment
begins.

is "1i"b it the <comment appears in its
statement before any tokens.

is "1*b it no tokens appear between this
comment and the previous comment assoclated
with this statement.

As avallabte for use by lex_string_*'s catler.

is a3 pointer to a comment descriptor
structure.

is the character string value of a comment,

above deciliaratlons are avallable for Incluslon {in PL/I

Copyright 1974,

lex_descriptors_.incl.pli.

Massachusetts Institute of Technol ogy
and Honeywell Informatlon Systems Ince.

<no-token>
<any=-‘token>

BREGIN

MAX_DFPTH <deci{mat=integer> ™*"
<no-token>

<any-token>

L

<name>

ll\ll
<no-token>
<cany-token>

cquoted-string>
L <BS> _

4

<any-~token>
<no=token>

L

<name>

o
<cany=-token>»
<no-token>

<quoted-string>
<BS> _
<S>
<nS >
<RBS>
<3S >»
<BS>
<S> _
no-token
no-token

L

cany-token>

IAIA = m ey AN

2
2

any~token >

name >
decimal-integer >
8BS »

quo ted=-string »
<name> >

e

AlA A TAIA A

<any=-token>

/%+s
MAX_DEPTH 20 \
BEGIN /
/
attributes
/
/
/
/
passli
set_tlabel /
/
/
14
/
count /
/
/
/
/
pass?
skip_tabet
tabel /
/
/7
/
/
tokens 14
4
7/
/
14
/
/
7/
/
/
/
/
/
4
/
/
/
/
I'4
/

<no-token>

NN NN NN NN

NN NN N NN NN,

NNNN NN,

NN N NN NN,

ERRNAR(1)
reductlons_Injt

(Psave = Pthls_token)
LEX set_depth LEX(2)
EQRNRI(L)

ERPROR(2) NEXT_STMY

count_reductlion LEX

set_lasrxal LFEYX

EPRNOR(22) LEX

[(Pthis_token = Psavel reductlons_begln
ERRNAR(3) LEX

count_token{1) LEX(1)
count_token(3) LEX(3)
NEXT_STMT
count_token{q1) LEX
ERROR(3)

reduction_begln LEX
LEX
LEX
LEX

compite_token(f) LEX
complie_token(0) LEX(3)

action_besaln LEX

comolle_token(0) LEX(3)
complie_token(0) LEX(3)
comoite_token(0d) LEX(3)
complie_token(0) LEX(3)
comoile_token{(g) LEX(3)
complle_token(0) LEX(3)
compila_token(1) actlon_begln LEX(4)

LEX(3) ERPOR(14) (ob)_red.Ilast{Nob)_r2d)

recduction_end NEXT_STMT
comnite_token(2) LEX(3)
comnjile_token(3) LEX(3)
comnile_token{(4) LEX(3)
complte_token(5) LEX(3)
complia_token{b) LEX(3)

LEX conplle_token(7) LEX(2)
EPRIR(22) LEX

comnlite token{0) LEX
ERRORI(5)

»

~

NN NN NN NN

NN NN N NN NN,

MNNN NN NN,

NN N NN NN N

stop \
attributes\

passi \
attributes\
stop \

attributes\

count \
set_label\
set_ltabel \
pass \
set_label\

count \
count \
set_taoetl\
count \
stop \

tokeas \
sklp_tabel\
skip_tabel\
skip_tabel\
stop \

toxens
toxens
actlon
tokens
to<ens
to<ens
toxens
toxens
to<ens
action

P A Al A A A S A A A 4

laoel
toxens
toxens
to<ens
tokens
toxens
tocens
lanel
tokens
stop

P A A A A i A A

afenbue uoL3oNpay 3yl 404 SuOL3IDINPaY

€60 -91W

) Yy)

97 actlon /7 [/ LEX / next_red\
93 / LEX (<decimal-integer>) / LEX(2) rtn(1) LEX(2} / actlon \
99 /7 LFEX (/ ERPNR(19) (obi_red.Itast{Nob]_red) = 7]
190 : reduction_end NEXT_STuT / laoel \
101 /7 LFX / rtn(2) LEX / actlon \
102 / NEXT_STMT (/ EPRNR(13) f(ob)_red.It3ast(Nob]_red) = 0]
103 reduction_end NEXT_STMT /7 t3aoel \
104 7 NEXT_STNT / rtn(3) LEX / actlon '\
105 / POP / EPRNR(19) ([obj_red.Ilast(Noh}_red) = ()
106 reduction_end NEXT_STMT / label \
107 / POP / rtn{4) LEX / actlon A\
103 / PUSH (<name>) /7 LEX{(2Y rtn(5) LEX(2) N / action \
119 / PUSH / FRRNR(19) (ob)_red.Ilast{Noo)_red) = 0]
110 reduction_end NEXT_STMY / laosel \
111 / ERROR (<decimal-Iinteger>) / [Sinclude_ERROR = *"1'">3] set_action_wlty_args
112) LEX(2) PUSH({tast_paren) / args \
113 /7 ERROR) / EPRNR{19) (obj_red.Tiast{(Nob)_red) = D}
116 reductlon_end NEXT_STHMT / lasel \
115 7 (/ LEX(1) output({(o)™ e B N 42 R] / stnt \
116 7 / ERPNR(21) LFEX / action N\
117 /7 / ERROR(21) LEX / action N\
118 /) / ERRAR(21) LEX / actlon '\
119 / <quoted-string> / ERRNR(23) [ob})_red.,Tlast(Nob} _red) = g]
120 : reduction_end NEXT_STMT / {3aosel \
121 /7 M\ / ERPRIR(22) lodb)_red.llast(Nobj_rzd) = 0]
122 reductlon_end LEX / 13pel \
123 / <any-token> { / set_actlion_with_args LEX(2) PUSHllast_>3aren) / args \
124 / <any=token> / set_action LEX / actian A\
125 / <no-token> / ERRORI(5) / stop \
126
127 stmt / cquoted-string» / output{™ ") output{token_value) output ("""")
125 : LFX / stnt \
129 7 (/ outout(™(*) LEX PUSH(stmt) / ar3s \
130 /1 / LFX / tast_paren \
131 /7 3 / outout (™3™ 1! NL 1Y (&)™ I B N -2 R
132 LEX / stat \
133) 7 \" / ERRNR(24) {ob)_red.llast{Nob]_rad) = 3]
134 reduction_end LEX / 1asel \
135 / <any-token> / outout(token_value) output (™ ") LEX / stat \
136 / <no-token> / ERROR{5) ~/ stop \
137
133 args / <quoted-string»> / output{™""*") output{token_v3atue) outpub ("*"")
139 LEX / args \
140 7 / outout("™(") LEX PUSH(args) / arjs \
141 /7)) / output(*)*) LEX / STACK_20P A\
142 /7 \" / EPROR{24) ([ob)_redsllast(Noo}_red) = 0}
163 reduction_end LEX / laoel’ \
144 / <any-token> / output{token_valtue) LEX / args \
145 / <no=-token> / ERRNORI(5) / stop \
1456
147 last_paren/ / output("3") output{NL) / actlon \
1468

afenbue] u0L12Npay dYl J04 SUOLIONPIY

€60 -41W

149 next_red

150
151
152
153
154
155
156
157
158
159
160
161
162
163

stop

-\'l

RETUPN **
STACK *\¢
STACK_POP "*
‘na“‘e> "\!.
<name>

<any=token> "\"
<any-token>
<no-token>

<no-token>
<any-token>

NN NN N

N NN

NN

next_reduction reduction_end LEX /
terminat_reduction reduction_end LEX(2)
stacked_reduction reduction_end LEX{(?)
stacked_reductlon_wlith_pop reductlon_2v3 LEX(2)
specified_label reduction_end LEX(2)
specifled_tabel reductlon_end ERROR(15)
NEXT_STMT /

NN NN

ERPIR(4) next_reduction reduction_end JEXT_STNT /
ERROR(L5Y naxt_reduction reduction_and NiFXT_ST4T/
ERROR(5) /
reductions_end 4
ERROR(5) reductlons_end /

t3oel
lasel
I3aoel
lanetl
faoel

tasel
fasel
l3del
stop

RETURN
RETURN

Pl A A A 4

P A A

++¥/

abenbue uoL3onNpay syl 404 SUOLIDONPIY

€60 -4d1KW

