MULTICS TECHNICAL BULLETIN MTB - 080

T0:2 Distribution
FROMS Gary Ce Dixon
DATE?S May 28, 1974

SUBJECT? Creating Special=Purpose Transiators

Otten, system programmers must define a new, spaclal-purpose
fanguage and write a compiter, interpreter, or other form of
translator for that language. Usually, such fanguages are used!
to specify the contents of, or to manipulate 1|Items in, a
particular data base; to generate ALM codej} or to specify some
process to be performed, Exampies of such languages in Multics

inctudet exec_com control fanguageiy runoff control languagej}
bind control! language; the input l|anguage for set_search_rules;
error_table_ Ilanguage; I0 Daemon parameter {anguage; project

master fifte language; I0 complier language; etc.

Languages llke exec_comy bind control and runoff control
fanguage are used heavily and therefore deserve speclal-purpose
translators which are optimized for peak performance. However,
most special-purpose fanguages are used infrequently as part of
some maintenance or development process. The translators for
such lightiy-used 1anguages should be quick to write, simple to
understand and maintain, and easy to extand, rather than beling
optimized for high performance.

Multics should provide a tool which creates a translator
from a simple specification of the syntax and semantics of the
tanguage to be translated. Such a tool would mske it easier to
write special-purposey tightly-used transiators. In addition,
the wuse of a singie transfator generatlion tool would guarantee
that all of the transiators would have the same structure anc
would share the same method of processing their Input fanguages
Instead ot 20 transltators with 20 different methods of (anguage
specification and 20 unique transiation algorithms, there would
be 20 transliators which translate languages defined in a common
fanguage detinition 1language and whlch share a common § anguage
translation algorithms This would greatly simplify the task of
understanding and maintalining all of the transtators which seem
to be proliferating In Multics at an alarming rate.

MIT®*s course 6.251, "Programming Systems*, presented such a
fanguage definitlon I1anguage called the reduction fanguage. In
this language, the phrases in the fanguage to be ftranslated are
defined In Backus—=Naur Form (BNF). A set of action routlnes are
associated with each of the defined phrases. T hese action
routines assign some semantic meaning to input strings which
match the defined phase. The reduction language Is e@asy to use,
can define a large class of fanguagesy and can be compiled into
an etticient, table-driven transiatore.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.



MULTICS VYECHNICAL BULLETIN MTB - 080

To test out the theoretlical benetfjits of a transltator
compi ler, I have <created a compilfer for the 6.251 reduction
tanguage, As Inputy this reduction_compifer accepts an ASCII
segment containing a set of reductjions defining the language to
be transiated, and a set of PL/I subroutines which are the action
routines referenced by those reductions. The compiler converts
the reductlions Into PL/I deciaratlons for the tables which drive
a pre-coded transiation subroutine. The compiler outputs the
tablie declarations, the transtation subroutines and the action
routines Into a PL/I source sagment, which can then be compliled.

I found significant benefits in the code generated by the
reductlion_compiler, First, It is easier and faster to generate a
transfator wlth the reductlion_compiier than to generate an
equivaient transliator by hande The reduction_compiler was used
to bootstrap Itselt, and the total time for <coding and

bootstrapping was about two man-dayse. Tom VanVieck used the
reduction_compiter to create a new version of cv_pmf [n aoout one
man-=day. Ross Kilinger used the reduction_compller to create the

tape_in/tape_out command, the transiation portion ot which took
about one man~day to code.

Second, the very nature of ihe reduction language forces the
prcgrammer to separate the detinition of §anguage syntax from the
coding of actlon routlnes. This separatlon In the code forces a
beneficial separation in the mind of ¢the programmer In a way
which simpiifies the process of defining the transtator. The
separation also makes the transliator easlier to understand for
other programmers who must maintain or extend the translator at a
later date.

Thirds, an Important side effect 0f the separation between
syntax analysis and action routines 1iIs the ease of debugging
reduction~generated translators. Because the transiation code Is
compl ler-generated, it is error-tfree, thus eliiminating what |s
usuatly an limportant source of bugs Iin most transiatorse. Atso,
the bugs which do appear are [solated fram one another and are
easy to identify. In general, they are caused by a bad reduction
statement which causes one phrase In the fanguage being
translated to be rejected by the transiators or they are caused
by a bad action routine which causes only one or a few phrases to
be translated improperiy.

Fourth, the structure of reduction-generated translators
makes (s easy to create one action routine that can be used in
several different translators. For exampley, 1 have created an
error message action routine which prints a compiler-style error
message from a tabile of messages. The subroutine substitutes
values {[nto the error message text, raports the error severjty
and |ine number, and prints the statement or {ine which was In
error. This ease ot sharing useful routines could facititate the
development of a tibrary of general~purpose action routines which
would further simplify the creation of a compiler, whilea at the



MULTICS TECHNICAL BULLETIN | MTB - 080

same time easing the mailntenance problem by promoting the use of
common code.

Finallyy since the franslation is a table-driven process
which uses an efflcient translation algorithm, transliator
per formance is competitive with the most caretfuliy hand-coded
transtators. VanVlieck®s new version of cv_pmf operates abpout 307%
taster than the installed version. Some of this performance
improvement is due to the wuse of EIS instructions In the
reduction_compliler and its assoclated parsing routine, but I
bel leve the table-driven transiation process accounts for at
least a 107 speed-up in the translatione

Given these benefitsy, I feel that it would be useful to
instati the reductlon_compiler or a similar tool. I would
appreclate your comments on this proposed Installation.

If you are interested In detaited specificatlions ftor the
reduction language which Is input to the reduction_complier, or
for the flex_string_ lexicatl analyzer which is an adjunct of the
reduction_compiler, you can dprint the following runoff segments.

>udd>pdo>gd>» doc>»p>reduction_compl ler.spss.runotf

>udd>pdo>gd>doc>p>lex_string_.sps.runoff
>udd>»pdo>gd>doc>p>lex_error_.spserunoft

It vyou want to try out the reductlon_complier, you will need the
include segments in ‘

>udd>»pdo>gd>instalied_source
and the object programs In

>udd>pdo>gd>object



