
Multics Technical Bulletin MTB- 066 

To: Distribution 

From: Steve Webber 

Subject: New Multics Scheduler Proposal 

Date: 04/19/74 

Oyery j e\-1 

As part of the Multics performance analysis effort, the idea 
of a new scheduler has been raised more than once. This memo is 
being written to describe a scheduler which hopes to solve many 
of the problems we can recognize as well as provide for several 
new features which have been proposed In the past, but which have 
little bearing on the performance issue Itself. In particular, 
it is clai1ned that this proposed scheduler will: 

1. provide more efficient scheduling of processors and main 
memory 

2. provide more information to system analyiers thru better and 
more relevant meters 

3. provide for the capability of process "priorities" which are 
assigned at log-in time and which govern the price of the 
process as well as the response of the process relative to 
others on the system. 

4. provide for system administrator controlled process classes 
such that the processes of a process class can be guaranteed 
a certain percentage of the CPU capacity. 

5. provide for dynamically changeabl~ priority characteristics 
under system administration coni~ol. 

6. provide for the capability of system software performing 
automatic tuning of the system. 

7. provide for a realistic, useful Interface to page control to 
communicate necessary information. 

~hat is currently called the traffic controller is subdivided 
into the following areas: 

• 

Multics Project internal working documentation. Not to 
reproduced or distributed outside the Multics Project. 

be 



Page 2 MTB- 066 

1. process management and synchronization, 

2. process schedul tng, and 

3. process dispatching. 

The process management features of the traffic controller 
consist of the callable interfaces to block, wakeup, stop and the 
like. The process scheduler function assigns a process to a 
given queue and awards the process a given "quantum" of time for 
its next execution period. The dispatching function of the 
scheduler does process switching. It awards "eligibility" and 
chooses which process is next to be given the processor. 

Process Management 

The process management features of the traffic controller 
are not being changed by this proposal except for the addition of 
a few administrative interfaces for controlling process 
priorities and scheduling tables. 

Scheduler 

The scheduler is to be completely replaced by a table driven 
mechanism that attempts to guess a process's future behavior and 
then award the process relative priority with respect to the 
other processes on the system. 

There are three decisions the scheduler must make about a 
process in order for the dispatcher to decide when to run the 
process. The first Is the relative delay the process will 
observe before it is next run; the second ts the quantum the 
process will be allotted, and the third Is a measure of the core 
requirements that the process will be allowed to use. 

aueues 

The relative delay is Implemented via a series of queues. 
There are two classes of queues in the system. The first, the 
oriorjty gueyes are an ordered sequence of, say, N separate 
queues each managed Individually on a round robin bases. If a 
process is assigned to one of these queues, it will be threaded 
in at the tall of the queue and will not be run until after It 
trickles up to the head. If a process is not assigned to a 
priority queue it .will be assigned to one of M special queues. 
As In the priority queue case, a process Is threaded to the tail 
of a special queue at scheduling time. The difference between 
the priority queues and the special queues will be described when 
the dispatching mechanism is given. The only way a process will 
be assigned to a special queue is If the process has been awarded 



MTB-066 Page 3 

(penalized) by the system administrator the appropriate special 
queue attribute, typically at process creation time but not 
restricted to it. If a process is not special in this sense, the 
scheduler uses its heuristics to select one of the priority 
queues and threads the process to the tail of the selected queue. 

Qyeue Selection 

The queue selection process consists in evaluating a given 
function with several Inputs based on the past performance of the 
process. In particular the inputs under consideration are: 

1. estimate of previous working set 

2. previous quantum 

3. interaction behavior 

4. time weighted average of mean time between page faults 

5. previous core use 1 imits 

These inputs will be distilled into the two variables below: 

1. quantum characteristics (Q) 

2. paging characteristics (P) 

The actual technique of mapping of the 5 variables into the 
2 variables is not described here Cit hns not been chosen yP.t) 
but it will supposedly be very simple, easy to compute and easily 
(although not dynamically) changed'. 

The two measures of a process's recent behavior (Q and P) 
are used to answer the three scheduler questions. This is donP. 
by a simple table lookup in 3 two-dimensional arrays which yield 
as output: the new queue number, the new quantum and the new core 
use limits. The diagram below shows how the array might be built 
for queue number selection. 



Page 4 MTB-066 

~ 
- - --- ----- --·-- --

- -------.---
4 8 16 64 128 256 512 

0 1 1 1 1 2 4 6 

1/ 2 2 2 2 3 4 5 6 

2 2 3 3 4 
N=6 

5 6 6 

4 2 4 5 5 6 6 6 

8 2 5 6 6 6 6 6 

queue selectjon 

Note that for interpretation of the table the Q should be 
thought of as thf'! previous quantum modified somewhat by the 
5-to-L distillation. Similarly the P should be thought of as the 
previous working set estimate. 

Uuaotum Selection 

The diagram below shows a typical quantum selection table. 

' 

~ 4 8 16 64 128 256 512 

0 1/ 2 1/ 2 1 4 8 8 8 
-
1/2 1/ 2 1 2 8 8 16 16 

N=6 

2 2 2 4 8 12 16 16 

4 4 4 G 12 12 16 1 fi 

8 8 12 12 12 12 16 16 

quantum selection 



MTB- 066 Page 5 

Core Use Limits Selection 

The core use limits decision Is analogous and would select 
minimum and maximum page pool sizes for the given process. (See 
MTB-XXX). 

Note that it Is Intended that these selection tahles be 
changeable while the system is running, both from explicit system 
administrator request and from dynamic system overload or 
underload detection mechanisms. 

Djsoatcher 

The dispatcher function of the traffic controller is invoked 
whenever a processor is made available. The dispatcher selects a 
process to run on the processor unless no acceptible process 
exists in which case the dispathcer runs an idle process. 

Input to the dispatcher consists of the (ordered) priority 
queues, the (unordered) special queues, process characteristics 
and variables for each process In the queues and the 
gyeye selection 1 jst. 

Oueye Selection List 

The queue selection list consists of an apparently random 
sequence of queue numbers from which the dispatcher will select 
another process to run. This 1 ist is inspected whenever the 
dispatcher can not run any of the eligible processes (i.e. those 
processes which are allowed to compete actively for core memory). 
The queue selection list index points to the next entry in the 
queue selection.list (with wrap-around). If the process at the 
head of the queue selected by the queue selection 11st can not be 
awarded eligibility because of core considerations, the 
dispatcher will run an idle process. Otherwise it will a~1ard 
eligibility (thread the process into the eligible queue) anrl 
initiate the loading of the process, i.e. getting enough of the 
process Into core so that the process can page in the rest of 
what it needs. 

The awarding of eligibility is done only if there appears to 
be enough core available to run the new process. This is 
determined by comparing the sum of the minimun core pool sizes 
(see ~TB-XXX) with the amount of core that is in the paging pool 
and determining If the new process's minimum core pool size will 
cause an overflow. 



Page 6 MTB-066 

Some Observations 

One of the prime reasons for rethinking the scheduling Is to 
attempt to reduce thrashing. Thrashing seems to occur primarily 
under heavy loads and is caused primarily because the degree of 
multiprogramming (I.e. the current number of eligible processes) 
Is too high. The current system runs with a fixed eligible list 
size of 6 and with current working sets we have a great deal of 
thrashing. 

The new proposal attempts to attack this problem at two 
stages. First, by reintroducing the variable eligibil lty which 
we once had, we can dynamically adjust to local changes lo system 
load and avoid too high a degree of multiprogramming. Second, by 
using the queue selection list technique, we are fairly safe In 
assuming that 2 large jobs will not both be run at the same time 
Cthe large jobs would supposedly be in queues which are rarely 
selected) and hence we need not fear giving these large jobs a 
large quantum. The advantage of giving a large job (larger 
working set job, that is) a large quantum Is that system overhead 
is reduced because we are not continually required to reestablish 
the working set of the large job whenever It wants to run. 

After what the supervlser considers an interaction takes 
place, the given process will be given special threatment by the 
scheduler. There are several options but a reasonable one would 
be to assign the process to the tall of the highest priority 
queue and somehow choose an appropriately small lnitl~l quantum. 

Meters 

One of the meters that will be kept for each process (and 
for the system) Is the mean (virtual) cpu time between page 
faults. This meter is useful both in scheduling a single process 
as well as In testing the system for underload or overload. 

Other meters that will be taken are 

1. average (virtual) CPU time between Interaction for a 
process 

2. the average quantum selected by the system as a function 
of queue size 

3. the mean (virtual) CPU time between page faults as a 
function of working set size and as a function of core 
use limits 

4. average response time after an interaction. 

The current plan Is to attempt to implement this new 
shceduler (with appropriate modifications resulting from reader 



MTS- 066 Page 7 

feedback) and to run several test systems using all the available 
metering tools we have. If the new scheduler seems to be better 
and easily workable an MCR will be submitted for the installation 
of the scheduler. Until that time the study work will be done 
under the authority of an MCR requesting the study of the new 
scheduler alone. 


