Muitics Technical Bulletin MTB=-ubJ

Tos Distribution
From? Robert A. Freiburghouse
Subject? The Command Langyuade Revisited

Datel Aprit 17, 197+

This document defines a <command language and command
processor that is intended to be a user selectea alternative to
the current Multics command processor, The language is suitaple
for use as an interactive or absentee job control language, and
it also is a suitable language in which to perform simple
calculartionse.

Design Oblectives

1. Provide a single unified ltanguage containing the eaessentjal
functions of calcy abbrev, do, exec_com, absentee and the
current Multics command |anguage.

2+ Provide a command language that can call suroutines and
functions written in standard languages in a natural manner
passing arguments and receiving values having any of the
.scalar data types of the standard languagess Any procedure
whose arguments and retfturn values are scalars can be invoked
from the command processor exactly as it would be invoked
from another procedures thus eliminating the need for active
functions and commands to be written in a nonstandard style,

3« Provide a tanguage whose implementation nill perform a
given operation using less CPU time and storage than used oy
the existing command processor and related tacilities to
perform the eguivalent operation,

General Goncepts

The command language is a very simple algorlithmic language
whose largest syntatic unit is a <commani». Each <command> (s a
conlitional or unconditionai imperative statement which can
contain references to named varliables, expressionsy and other
<command>s. Expressions are the familiar parenthesized infix anu
prefix expressions of Fortran or PL/IL.

Multics Project internal working Jdocumentation. Not to be
reproduced or Jdistributed outside the Mulitics Prolect.

Page 2 MTB~ub3

The command processor is an interpreter that execuytes 3
sequence of <command>Se Interpretation of each <command> (s
performed as a ftwo stage process. Ouring the first stage, fthe
<command> is processed as a sequence of characters without regara
fo its syntatic constructlon or purpose as a command. If is
during this first stage that abbreviations and parameters are
replaced as described {later. During the second stage of
interpretation, each <command> s parsed {identified) and
executeds

The command processor c¢an be called by a <command>. Each
invocation creates a nemw set of argumentsy a new set of iocal
variablesy, a new command input filey, and a new “current”
abbreviation ftilea

Cp Source Si S2sesosSn
or

cp source
or

cp

where source is a pair of strings fthat ldentifies the command
input filey, and S1 S2e¢se5Nn are strings which are arguments of the
new invocation of the command pProcessor. It source is omjfted,
comrmands are read from user_inpufe A more precise definition of
the relationship between an invocation ot the command processor
and its 170 attachments is given in Appendix A.

Parameter Substitution and Abbreviation Replacement

Before each <command> ls executedy, the followiny steps are
performed!

i1« tach &K or &rKs; where K is an <integer>, is replaced by
the Kth argument to this Invocation of the command
pProcessor. It no such argument exists,y, the &K or &rKk is
removed. The replaced text is rescanned from
feft-to-right. Parameters of the form &rK cause the
replaced text to be quoted and any contained quofes to be
doubied. This step is complete when the first ;3 or
newl ine not contained in guotes is encountereds.

2e It the string produced by step L begins with an ¢!, the !
is removed and processing continues with step 3.

It the current Iinstance of the abbrev I/70 switch is
attached, the flite is used as an abbreviation filile. Any
token defined by the abbreviation file is replaced by
text from the abbreviation file., The replaced text |is
not rescanned.

\

MTB=y063

3

4o

Page 3

Each occurrence of [<text>) is processed as if it were a
command and the value of the command is used to replace
the [<text>]. The value must be & character string. The
processing ot the <text> cantlnues from this step, fthus
allonwing nested instances of [<text>]}.

It the command does not begin with a ., perform the
toiloming steps?

a. Parse the <caommand as a sequence of <symbol>s s1
S2seeSh Using the folloming syntaxst

<gymbol=1ist>3t= <symbol>ees

<symbol>83= <quoted string>|<unquoted string>]j
<parenthesized string>

<gquoted sftring>83= “<char>..."
<char>3t= "“"|Any ASCII character except™

<parenthesized string»8l|= (€char>e.e¢.)
such that parenthesls are palanced,

<ynquoted string>331= <not parenthesized?> <notend>...

<notend>id= Any ASCII character except blank,
taby, nexline, or 3}

<not parenthesized>$s=
any <notend> except lefft parenthesis

bs remove the surrounding parenthesis from each
<parenthesized string>

ce Surround each <unguoted string> with juotes.,

de if one or more sequences of <symbol>s is described by?
{<symboi> [<symboi>leesl}

then all such sequences must have the same number of

<symbol>s and musft must not contain any nested occurences

of such sequences.

Let n be the number of <synbaol>s in each such seguence.

For HK=1s2seeeny replace each seguence wWith its kth

<symbol> and perform step e.

If no such seguence exist, perform step e once.

e. Renrite the command as?

Jage & MTB=3b3

ecall s1 (S29y $39 eeey SN)

Note, the actions performed for step &4 alilon calls to be
typed with a minimal syntax very similar to the syntax used Dy
the current command processore Braces cause iferation as do
parentheses jin the current comaand Janguage. Parentheses are

~used to embed expressions into this type of command,. Square

brackets are used as active ftunctions In any command line and are
processed as part of the string processing that occurs prior to
execution of the command as described in step 3. The special
significance of {1 €3 () * & and } can be suppressed by use of
the escape character ~.

Note that by using abbreviations the user can elimjinate the
e« required on each command and can change the syntax of commands
to a limited extent.

Ihe Syntax apnd Semantics of Commangds

<command>8l= <attach>|<detach>»i<do>|<exjit>]|
<while>]<if>|<let>|<call>|<creturn>|<print>»|
<on>{<abort>|<for>

<attach >38= ,attach <switch> <source>
<switch>ii= command_inputijuser_input|abbrev

<source>!i= switch <expression>|
path <expression?»|]
string <expression>

causes the attachment of the current Instance of the <switch> to
be ‘*"pushed 3Jown", and fthe <switch> to be attached to the
<source>. If <spource>» (s string <expression> the character
string value of the <expression> serves as the file.

<detach>3i= .,detach <switch>
causes the attachment of the current instance of the <switch> to
be “popped up”, that is, replaced by the previous attachment of
that <switch>,.

<do>i8= ,do <group?

<yroup>it= <command>] {<command>l j<command>lees)
causes the <command>s of the <group> fto be executed by the
current invocation of the command processore. Normally a <do> is

used as part of a compound <commani> such as <if>, <while>, <for>
or <on>. '

MTB=,0 3 ' Page 5

<exit>i1= .exit
causes the execution of the current <do> to be terminated ana the
<command> followming the <d0> fto be executed. It is an error to
execute an <exit> outside of a <dJdo>.

<while>3l= ,while<expression><jo>
If <expression>» is true, the <do> |s evaluated; otherwise, it is
note Upon completion of the <ido>s the <while>» s repeated. The
<cexpression> must vield a logical value.

<jt>33= ,jt<expression><io>
If <expression> [s true, the <do0> is evaluatedy otherwise, it is
note The <expression> must vield a logical value,

<let>t1= ,let<name> be <expression>
causes <name> fto be defined as a local variable allocated in the

current stack frame. The value of the wvarlable is the value
produced by evailuation of the <expression>.

<call>»3s= .
«call <expression>(i<expression>l{j,y<cexpression>leee.l)

Evaluation 2t the first <expression> must yield a string ylving a
pathname that identifies an object seyment entry point.

The argument <expression>s are evaluated and converted to conform
to the data types specitfied by the entry deftinition of the object
segment as described later.

raturn>ii= .return
causes control to return from the <current invocation of fthe
command processors

<print>3i= .print <expression>[,<expression>le.se
causes the value of each <expression>» to be nritten on

user_oulput in a suitable tormat,

<on>83= .0n <expression> <Jo>

Page & , : MTB-.63

causes the <do> to be established as an on=unit for the condition
identified by the string wvalue of the <expression>, The
<gxpression> must yieid a string value. The execution of an
<exit> or the normal termination of the <do> causes control to
return to the signatier. 1If conftrol is to be returned to the
<command> foliowing the <command> whose execution caused the
sighaty an <abort> must be executed,

<abort>»$i= .abort

causes execufion of fthe <command> following the <command>» whose
execution caused the most recent signal. It is an error to
execute an <abort> not continued within a <J5»y used as an
on=unit.

MTB=,03 | Page 7

<for>i3= ,tor <name>=<expression>{,<expression>l...<io>
Let n be the number of <expression>s. For k=142y¢eeny the kth
<expression> is evaluated and its resulting value assigned to the
local variable <name>, and the <do»> is evaluateda, A <for>
deflnes its <name> as a local variable just like a <let>,

<name>1d= .<jdentitier>

<identlfler>3l= <letter>(<letter>|<digit>|=laes

<expression>ii= <infix>l<prefix>i<basic>

<intix>318= <expression><infix=-op><expression>

<infix-op>83= +|=~|¥|/|*¥]= |T= |>= j<= }j<|>|i&lLiLl]

<prefix>3i= {#|=| " Y<cexpression>

<basic>33= (<expresison>)])l<narpe>|<constant>|<function>

<constant>2i1= <«<jdentifier>j<quoted sftring>j<integer>»
l<real>|truelfalselnultl

<integer>3i1= <digit>see

<real>ts=
{(<integer>.(<inteyer>l}e<integer>}(elt|=l<integer>l

<function>t3= <expression>{{<expression>[y<expression>lessl)
A function works like a calty except that a return value is

expected and is converted to the corresponding command {anguage
data type.

Variables and Data Types

A local variabnle is altocated in the stack frame of the
command pProcessore. Each variable is capable of possessing values
of any data typee.

The possible data types arel

integer (tixed bin(35))
real (float dec(i18))
logical (bit(i)) A
string (char{25b6) varying)
adidress (pointer,y, pointer)

These data types are designed to accommodate alil PL/I ana Fortran
data types except complex numberse. The conversions between these

2age 8 MTB~ub3

types and PL/I types are glven in the !ol}onlng section.

A variable is defined by the appearance of (ts <pname> in a
<jet> or <tor>, Because the command language has no conceptl of
multiple scopes of names and no Jdeclared attributes, no
declarative statements are requirede The type of a variable is
the type of the value it currentiy possessess

Argument Conyversion

If an entry definition specifies no parameters, the
argumentsy, 1f any, are passed uithout conversion.

If the entry definition specifies a single one=dimensional
arrayy the arguments are convaerted fto the Jdata type of the array
and each argument is transformed into an eilement of the array.
The ltower bound of the array descriptor is seft to 1 and the upper
bound is set to ny where n Is the number of arguments given.
Using this schemey, a PL/] procedure can easily receive a variable
number ot arguments while remaining within the standard language,

It the entry definition specifies one or m®more scalar
arguments, each argument is converted fo the data type of |its
corresponding parametfer. If an argument is a reference fo a
tocal variable, it is passed by-reference; otherwisey, it |is
passed by-value. When an argument is passed by-referencey it is
converted to conform to the data type of the corresponding
parameter, and wupon return it is converted back fto the originatl
type of the argumentes

1f the expected data type of a called procedure is any kind
ot PL/I aritnmetic data, both integer and real can be converted
to the expected typee On returny, all PL/I arithmetic types,
except complex, can be converted either to integer or real.
Large decimal values are rounded and a warning produced.

Agyregate values cannot be passed or received,

PL/I bit stringsy other than bit{(l), are converted to
character strings.

Excessively long (>256) character strings are truncated with
a warning.

Because the commanid {anguage stores addresses as pointer
pairsy it can hold pointery offsety, tabeils entry, tormat, file,
and area values as address valuese

\

MTB=-ub3d Pagye 9

Appendix A

Each 1invocation of the command processor establishes a nen
instance of three 170 switches? caommand_input, user_input, ani
abbreve. These fthree switches are attached in the foilowing
manner.

command_input?

If this invocation of fthe command processor recelived tmo or
more arguments, the first two arguments identify the file to
which command_input Is aftached.

It any arguments are given, at least two must be given. The
first two arguments define how command_input is to be
attacheds The attachment is exactly the same as that
specified for the <attach> command on page 4.

It no arguments are given, command_Iinput is attached as a
synonym for the previous instance of command_Iinput. If no
previous instance exisfsy Lt is attached as a synonym for
user_input.,

user_inputi
user_input is attached as a synonym for the previous
instance of wuser_input. If this is the first instance, it
is afttached as a synonym for user_io.
abbrevs

abbrev is attached as a synonym for the previous instance of
abobreve If this is the tirst instance it is not attached,

Page 14

MTB~ub3 A\

Appendix B

Changes in thils revisioni

1.

e

Se

iteration is alliowed when mapping from an unpunctuated
call to a <callil>,

{<cexpression>l has been replaced by [<text>]. Prowviding
a more compatible treatment of active functions.

the command processor can be invoked =nith the set ot
commands it is to executey, providing an equivalent of the
currenft *do® command.

Examples?
rename a x
rename €a b c} {x y z} rename b vy

rename C 2

cp string “pll &i1jdp Ri.list™ foo do “pii &13dp &lelist® foc N\
(in existing system)

{fun a bl>x ¥y {ecall "fun™{("a","b™) I>x y
result>x vy scall *“result>x" (“"y*)

