
Huit1cs Technica• Bulletin

Toi Uistribution

froml Robert A. Freiburghouse

Suo)ect& The Command Lan~ua9e Revisited

Oates Apri I 17, 197<+

This document defines a command language and commanj
processor that is intended to be a user select~~ alternative to
the current Multics command processor. The language is suitaole
for use as an interactive or absentee Jab control language, and
it also is a suitable language in which to perform simple
calculations.

1. Provide a single unified language containing th~ essential
functions of calc, abbrev, do, exec_com, absentee and the
current Hui tics command language.

2• Provide a comniand 1 anguage that can ca 1 I subroutines an:i
functions written ln standard languages in a natural manner
passing arguments anJ receiving values having any of the
scalar data types of the standard languages. Aov procedur~
whose arguments dnj return values are scalars can be in~oked
from the command processor exactly as it would be invokej
from another procedure, thus eliminating the need for activt
functions and commands to be written in a nonstandard style.

3. Provide a lan9uage ~hose implementation ~ill perform a
given operation using less CPU time and storage than use~ oy
the existing command processor and related facilities to
perform the equivalent operation.

The commanj langudge is a very simple algorithmic laoguage
whose largest syntatic unlt is a <commanj>. Each <command> is a
conjitional or unconditional Imperative statement which can
contain references to named variables, expressions, and other
<command>s. Expressions are the famlllar parenthesized infix anJ
prefix expressions of Fortran or Pl/I.

Mui tics ProJect Internal working Jocumentatlon. Not to be
reproduced or jlstrlbuted outside the Muftics ?roJect.

Page 2 HTB-uo3

The command processor is an interpreter that executes a
se Quencl:! of <comman.l> s. Int er pre ta tl on of each <command> is
perfor~ed as a two stage process~ Ouring the first stage, the
<command> is processed as a sequence or characters without regarJ
to its '.iyntat.i.c construction or purpose as a comaiand. It is
during this f ir~t stage that abbreviations and parameters are
replaceJ as described eater. Ourin~ the second stage of
interpretation, each <command> is parsed (.i.dentlf led) and
executed.

The command
invocation creates
variables, a new
abbreviation file.

processor can be called by a <command>. Each
a new set of arguments, a new set of local

command input file, and a new "current"

cp source s1 sz ••• sn
or

cp source
or

cp

where source is a pair of strings that identifies the command
.i.nput fl h.!, and sl s2 ••• sn are strings "h.i.cn are arguments of the ""'
neM .invocation of the command processor. Ir source ls omitted,
commands are read from user_lnput. A more precise def lnition of
the relationship bet~een an invocation of the command processor
and its 110 attachments is given !n Appendix A.

B~tore each <command> is executed, the fol lowinQ steps are
pert or med.a

l• lach 'K or LrK, where K is an <integer>, is replaced DV
the Kth argument to this invocation of the commanl
processor. If no such argu11ent exists, the LK or irK ls
removed. The re pt aced text is rescanned from
left-to•rlght. Parameters of the form LrK cause the
replaced text to be Quotea and any conta.i.ned Quotes to be
double~. This step ls complete •hen the f lrst ; or
ne•line not contained in quotes ls encounterea.

2. If the string produced by step 1 beg.ins ~ith an !, the
.i.s removej an~ processing continues •ith step J.

If the current instance of the abbrev 1/0 s•itch is
attache.l, the fl.le ls used a,s an aooreviation file. Any
token defined bt the abbreviation file is replaced by
text from the abbreviation HI e. The replaced text is
not rescanned.

Pa~e 3

3. Each occurrence of (<text>J ls processej as if it were a
command and the value of the commanj ls u~ed to replace
the C<text>J. The value must be a character striny. The
processing of the.<text> contlnu~s from this step, thus
allowing nested instances of (<text>J.

~. If the command does not begin w!th a ., perform the
fo•lo•lng step:al

a. Parse the command as a seQuence of <svmbol>s sl
s2 ••• sn using the foilo•ing svntaxl

<symbol•llst>ll= <symbol>•••

<svmbol>ll= <~uotej string>l<un~uotej string>!
<parenthesized string>

<Quoted strlng>ll= ff<char> ••• "

<char>ll= ""IAny ASCII character exc~pt"

<parenthesizea string>lll= (<char> ••• >
such that parenthesis are oalancea.

<unQuote(;I string>ll= <not parentheslz_ed> <notend> •••

<notend>&I= Any ASCII character except blank,
tab, ne•llne, or ;

<not parentheslzed>ll=
anv <notend> except left parenthesis

b. remove the surrounding par en thesis from
<parenthesized string>

c• Surround each <unQuote3 string> with ~uotes.

each

de lf one or more seQuences of <svmool>s is aescribed bya

C<symbot> (<svmbol>l ••• J

then alj such sequences must have the same number of
<symbo.l>s and must must not contain anv nesteJ occurences
of such seQuences.

Let n be the number of <synbol>s in each
For k=1.2, ••• n, replace each sequence
<symbol> and perform step e.

such seQuence.
with its k th

If no such sequence exist, perform step e once.

e. Rewrite the commanj asa

MTB• 1.1 b.3

• ca I I s 1 < s 2 , s J, ••• , sn)

Note, the actions performeo for step~ allow calls to be
tvped with a minimal svntax very similar to the syntax usej by
the current commanl processor. Braces cause iteration as do
parentheses in the current com•and language. Parentheses are
usej to embed expressions into this type of command. SQuare
brackets are used as active functions ln any command tine and are
processed as part of the string processing that occurs prior to
execution of the command as described in step J. The special
significance of Cl {} () ! & ana ; can be suppressea by use of
the escape character -.

Note that by using abbreviations the user can eliminate the
• required on each command and can change the svntax of comm~nds
to a limited extent.

<command>ll= <attach>l<detach>l<do>l<exlt>I
<while>l<if>l<Jet>l<call>l<return>J<print>I
<on>l<abort>t<for>

<attach >II= .attach <s~ltch> <source>

<switch>&•= command_inputtuser_lnputfaobrev

<source>&:= switch <expresslon>I
path <expresslon>I
string <expression>

causes the attachment of the current instance of the <switch> to
be "pushe>:a jown", anj the <s..,i tch> to be attachej to the
<source>. If <source> is string <expression> the character
string value of the <expression> serves as the file.

<~etach>ll= .detach <switch>

causes the at.tachment of the current instance of the <silllltch> to
be Mpoppej up~, that ls, replaced by the previous attachment of
that <s1Jlli tch>.

<do>ll= .do <group>

<group>ll= <commano>J(<command>C;ccommana>J ••• l

causes the <commanj>s of the <group> to be executed bV the
current invocation of the command processor. Normal Iv a <do> is
useJ as part of a compound <commanj> such as <jf>, <while>, <for>
or <on>.

Page 5

<exit>ll= .exit

causes the execution of the current <do> to be termlnated ana the
<command> fol lo•ing the <do> to be executed. ·It is an error to
execute an <e~it> outside of a <do>.

<whiJe>I&: .while<expres~ion><do>

If <expression> is tru~, the <do> is evaluatej; otherwise, !t is
not. Upon completion of the <jo>, the <while> is repeatej. Jh~

<expression> must yie•a a logical value.

<if>ll= eif<expression><jo>

If <expres~ion> is true, the <do> is evaluatej; otherwiidt it is
not. The <expression> must yield a logical value.

<let>&I= .let<name> be <expression>

causes <name> to be ~ef lned as a local variable allocatej in the
current stack frame. The vaJue of the varlable is th~ value
projucea by evaluation of the <expression>.

<calj>ll=
.cal I <expression>([<expression>[,<expression>J •••])

EvaJuation ~f the first <expression> must yield a str!ng ~lvin~ a
pathname that iJentifies an object se~ment entry point.

The argument <expression>s are evaluatej dnd converted to conform
to the data types specified by the entrv definition of the ooJect
segment as describej later.

<return>ll= .return

causes control to return from
commanj processor.

the current invocation of the

<print>11= .print <expression>C,<expression>J •••

causes th~ value of each <expression>
user_output in a suitable format.

<on>ll= .on <expre~sion> <jo>

to be written on

Page b

causes th~ <do> to be estab,lshed as an on-unit for the candltlon
identified bf tne strln9 va•ue of the <expression>. The
<expression> must yield a string value. The execution uf an
<exit> or the nor111al terrdnation of the <do> causes control to
return to the signaller. If control is to be returned to the
<command> following the <command> whose ~xecutlon caused the
signal, an <abort> must be executed.

<abort>&:: .abort

causes execution of the <command> fotlowlng the
execution caused the most recent signal.
execute an <abort> not continued Mithln a

<command> whose
It is an error to

<~o>, usej as an
on-unl t. ·

Page 7

<for>ll= .for <name>=<expresslon>C,<expresslon>J ••• <jo>

Let n be the number of <expre~slon>s. For k=1 1 2, ••• n, the kth
<expression> ls evaluated anj its resulting value assigned to the
loca1 variable <naae>, and the <do> ls evaluated. A <for>
defines its <name> as a local variable Just like a <let>.

<na•e>ll= .<identifier>

<identifier>ll= <letter>C<letter>l<cilglt>l=J •••

<expresslon>I&= <inf lx>J<prefix>f<baslc>

<lnfix>l&= <expression><lnfix-op><expresslon>

<lnfJ.x·op>ll= +l•l*lll""•J= 1-= 1>= I<= l<l>lll.llll

<prefix>ll= c+1-1-><expresslon>

<baslc>ll= (<expreslson>)J<name>J<constant>l<function>

<constant>aa= <!dentlfler>j<Quoted strlng>l<lnteger>
l<real>JtruelfalseJnull

<lnteger>ll= <dlglt> •••

<real>••=
C<lnteger>.C<lnteger>JJ.<lnteger>l{el•l•l<lnteger>J

<functlon>ll= <expresslon>lC<expresslon>C 1 <expresslon>J ••• Jl

A function works like a call, except that a return value is
expected and ls converted to the corresponJing command language
data type.

A locat varlaoJe is at located in the stack frame of the
command processor. Each variable is capable of possessing values
of anv data type.

The posslole data types areJ

integer
real
logical
s tr .lng
a d.lress

(fixed b.lnlJ5))
Cf I oat dee (18 >)
(b.it(l))

tchar(25&> varving)
(pointer, pointer)

These aata types are designed to acco•modate all PL/I and Fortran
data tvpes except complex numbers. The conversions between these

?age 6

tvpes and PL/I types are given in the fol~owing section.

A variable is defined by the appeardnce of
<let> or <for>. Because the command language
multiple scopes of names and no declared
decJarative statements are required. The type
the type of the vatue it currently possesses.

its <name> in a
has no concept of
attributes, no
of a variable is

If an entry definition specifies no parameters, the
arguments, 1 f any, are passed t11i thout conversion.

If the entry definition specifies a single one-dimensional
array, the arguments are converted to the ~ata type of the array
and each argument is transformed into an element of the arrav.
The tower bound of the array descriptor is set to 1 and the upper
bounj is set to n, •here n ls the number of arguments given.
Using this scheme, a PL11 procedure can easily receive a variable
number of arguments Mhile remaining within the standard language.

If the entry definition specifies one or more scalar
arguments, each ar~ument is converted to the d~ta type of its
corresponding parameter. If an argument is a reference to a
•ocat variable, it is passej by-referenc~; otherwise,_ lt is
passed by~value. Hhen an argument ls passed by-reference, it is
converted to conform to the data type of the corresponaing
parameter, and upon return it ls converted back to the original
type of th~ argument.

lt the expected data type of a callej procedure ls any kind
of PL/I arithmetic data, both inte~er and real can be converted
to tl'\e expected tv·pe. On return, all PL/l arith•etlc types,
exc@pt complex, can be converted either to integer or real.
Large decimat values are rounded and a warning produced.

Aggregate vatues cannot be passed or received.

PL/I bit strings, other than bit(1), are converted to
character strings.

~xcessively long <>Z5b) character strings are truncated Mith
a warning.

Because the com~and language stores addresses as pointer
pairs, it can hota pointer, offset, •at>el, entry, format, file,
and ared values as address values.

HTB-o6J Page 9

Appendix A

Each invocation of the command processor establishes a ne~
instance of three l/O switchesJ command_input, user_lnput, anj
abbrev. These three s•itches are attached in the following
manner.

commanci_inpu ta

If this invocation of the commana processor recelvej ho or
more arguments, the first two arguments identify the file to
which command_input ls attachec.

If anv arguments are given, at feast tMo must be given. The
first t~o arguments define how commanj_input is to be
attached. The attachment is exact•v the same as that
specified for the <attach> command on pa9e ~·

If oo arguments are ~iven, command_lnput is attached as a
svnonvm for the previous instance of commana_lnput. If no
previous instance exists, it is attached as a synonym for
user _input.

user_lnput'

" user _lnpu t ls attached as a svnonvm tor the previous
instance of user_lnput. If this ls the first instance, it
!s attached as a svnonvm for user io.

abbrev a

abbrev is attached as a svnonvm for the previous instance of
abbrev. If this is the first instance it is not attached.

Paye 141 HTB-u63

Appendi. x B

Changes in thls revlslonl

1. iteration ls allowed when mapping from an unpunctuated
caJI to a <call>.

2. {<expresslon>l has been replaced bV [<text>]. Provijing
a more compatible treatment of active functions.

J. the commanj processor can be invoked ~1th the set of
commands it ls to execute, provldJng an equivalent of the
current ••ao" co111man d.

Exa11pfesa

rename Ca b cl Cx y zl
rename a x

rename b y
rename c z

cp string "pl1 &1;ap L~.list" foo do .. pl1 i.l;dp 8..1.list"' foe~
(in existing system)

[fun a bl>x y
result>x v

{.call "fun"("a","b") J>x y
.call "result>x" <"v">

