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This MTB describes a proposal for the implementation of 
software for use of the 6100 Cache Store System with Multics. 
The Cache and the advantages to be gained by its use are 
described. The problems associated with its use on Multics are 
described, and solutions proposed. 

~HAT I~ THE CACHE, AND WHY SHOULD WE USE IT? 

Ttie 6lu0 Cache Store System is a fast, random-access buffer 
1.1e111ory, added to a tiOOO-series processor, at its port lor,ic. It 
is significantly faster than main memory (50 ns. basic access 
ti1ne, as opposed to 1.2 us), and is a physical part of the 
processor, as opposed to the m~nory hierarchy. It attempts to 
keep copies of recently used data from in itself, in much the 
same way that Multics attempts to keep copies of recently used 
pages in main 1neinory. Thus, if the processor's various subunits 
request some data from memory which has a copy in the cache, the 
request will be satisfied by the cache unit, and no request to 
main memory will be made. This saves a :;reat deal of time. 

The cache thus forms the fastest level of a multilevel 
memory hierarchy. Core, paging device (bulk store), and disk 
would be the next levels in a Multics system with the cache. The 
successful use of a cace depends on the patterns in which 
programs reference data, and those features (spatial locality of 
reference) which facilitate this use are common to most programs. 
Simulation studies by Honeywell predict that the use of the 6100 
Cache ~tore System on a model 6070 (No EIS, no segmentation, 
paging, or ring hardware), with four-way interlace and 
half-microsecond core, would reduce the CPU time required by a 
GCLJ~ CuduL compilation by 40%, as opposed to the sa1ne system 
without the cache. As there is no reason to suspect that typical 

1•lultics Project internal working documentation. Mot to be 
reproduced or distributed outside the Multics Project. 
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~ultics programs are that radical_ly different from GCOS programs, 
in their memory reference patterns, some comparable performance 
improvement wou 1 d not be unreasonab 1 e •. 

HOW IS THE CACHE ORGANIZED AND HOW QOES IT WORK? 

The cilOO Cache Store System consists of 2048 36-bit words on 
HAM bi po 1-ar · chips. These words are organized in to 512 b 1 ocks of 
four words each. Each block can contain four consecutive words, 
from a mod-4 boundary, from main storage. These blocks are 
further organized into 128 'columns', each containing four 
blocks. The blocks in any single column can hold only certain 
blocks from main storage. Thus, column 0 can hold block 0, block 
ll8 block 25ti, block J84, etc. of main store. In gener~l, column 
n can hold any block n+l2a*m, for any m. This in effect divides 
1aain m~nory into 128 equivalence classes of four-Word blocks 
competing_ for cache blocks in the same column. The cache works 
by absolute address it determines which address is being 
referenced in main 1~emory from the 24-bit final address presented 
to the port logic by the Appending Unit. Thus, association of 
contents with addresses is oblivious to seRmentation. Associated 
with the blocks of cache memory is a directory of 512 entries, ~ 
each entry describing the contents of .a corresponding cache 
memory block. A single bit (FULL/EMPTY) describes if the 
corresponding block contains val id inforMation. A fifteen-bit 
address field contains the upper 15 bits of the twenty-four bit 
absolute address of the words in main ~emory to which the words 
in the corresponding cache block correspqnd. The next seven b-its 
of this address are Implicit, as they define the column in which 
this block appears. The remaining two bits (24=15+7+2) select a 
particular word of the four word block. 

The cache is interposed between the Appending Unit, which in 
a Hultics processor mediates memory requests, and the port logic 
of the processor, which is responsible for direc~ing a memory 
re~uest (fetch, store, set a mask, etc.) and an· absolute address 
out of some processor port, based on the upper bits of the 
absolute address, and either receiving data from-or sending data 
to the selected controller. ~nong the functions of this logic is 
the sending of a request for service to the selected controller, 
and receiving a reply when the request has been granted. The 
processor module which initiates the request suspends its 
operations until this acknowledgement is received. 

The cache unit intercepts all of these memory requests. If 
the request is a simple read (NOT a lock-type 'read and clear', 
as wo u 1 d be used by t he s t a c , s t a c q , 1 d a c , ans a , e t c • , ~ 
instructions) the cache inspects the directory entries for that 
column of cache which would contain the words being requeste.d. 
This·means that four comparisons of the four 15-bit address 
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fields are done in parallel. The cache unit does not let the 
request for service go to the memory controller until it verifies 
tnat none of the four addresses compare. CA FULL bit being off 
µrevents a successful comparison as well.) If a match is found, 
the c~che retrieves the stored words from the cache block whose 
directory entry matches the requested address, and notifies the 
Appending Unit that the data is available. Not only does this 
retrieve the data with great rapidity, but enhances multiplexing 
of the memory controller. If no match is found, the request 
proceeds to the m~nory controller as usual. However, the cache 
replaces the contents of some block in the appropriate column 
with the two words which are returned from the memory controller. 
i·lhat is more, the cache unit makes a second request on the port 
logic to fetch the other two words to be stored in the cache 
block. The acknowledgement is then given to the Appending Unit. 
The block to be replaced is selected on a first-in-first-out 
(FIFO) basis. This ·is implemented by a two-bit counter 
associated with each column of the cache directory. 

Write-type requests go directly to main storage. Hence, the 
cache never fetches words when a store-type instruction is 
issued. rlowever, a compare is made with each of the directory 
entry address fields in the appropriate column, and if a match is 
fuund, the cache unit updates its contents with the data being 
v-1r i t ten. 

Locking-type fetches (read-and-clear) also go directly to 
1nain me111ory. The cache also purges the contents of a matching 
i.>lock, if any, by turning off the FULL/EfVIPTY bit. 

Ttie cacne can be turned on and off by a bit in the CPU mode 
regiiter, which is loaded by the LCPR instruction. Certain 
faults also cause the cache to turn off. A special register 
exists for controlling the modes of operation of the cache, 
controllable by another variant of the LCPR instruction. Every 
time the cache is turned on, it clears all of its FULL/EMPTY bits 
to EMPTY, as it has no way of knowing what was stored in main 
1~1emory while it was off, and it should never contend that any 
data that it might return are valid. 

Two features have been added to the cache specifically for 
1~ultics. An SDW bit has been defined, which, when off, tells the 
Appending Unit to inhibit the cache from making any successful 
address comparison. This has the effect of allowing some 
segments to have words sorted in the cache and others not. Also, 
a special variant of the CAMP (clear associative memory of PTWs) 
instruction has been defined which clears the FULL/EMPTY bit of 
any block in any column whose address in its directory entry 
1natches an address given as part of the instruction. This allows 
clearing of an entire page ou~ of the cache in two instructions. 
As each one of these instructions must cycle through 128 columns, 
Joing tnc four-way compare with each, 25 microseconds is reQuired 
for this operation. 
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A special version of the CAMS (Clear associative memory of 
SDWs) instruction has also been def~ned.~hi~h turns off all of 
the FULL/EMPTY bits at once, invalidating the entire contents of 
the cache at one. 

WHAT ARE THE PtWBL EMS "rl I TH THE USE OF THE CACHE vJI TH MULTI CS? 

The cache is an integral part of the processor - it is a 
buffer between the processor's component units and main memory. 
In Hultics, many active modules (processors, !OM, Bulk store 
unit, etc.) are connected to main memory. Any of these active 
111odules may inspect or change the contents of amin memory. 
rience, the cache unit in a processor may hold copies of words of 
111a in memory which have been changed there by the I OM or another 
processor since they were loaded into the cache. 

Thus, system activity v1hich involves more than one active 
1ilodule having access to any given word of core must be 
reconsidered in light of the cache. Since write-type requests by 
a processor go through the cache, directly to main storage, a 
word of cache storage never contains a word whose contents are 
1nore recent than the corresponding word of main storage. 
Difficulty arises only when a processor cache holds a word less 
recent than a copy in main storage. This can only happen for 
main memory words which are either 1) capable of being written 
into by a non-processor active module, or 2) accessible to two 
processors, at least one of which can write them. The use of 
segmentation .allows the grouping of data v/ith various access 
attributes into segments (e.g., only those segments known as '1/0 
buffers' contain words which are subject to b.eing w.ritten by 
another active device than a processor leaving the issue of 
paging 1/0 aside for a moment). The identity of segments which 
can be written by one processor ~nd seen ·by another (assuming for 
.the moment that the processors are to stay in the same· processes) 
is also an issue which can be hand·led · easily. Hence, 
segmentation provides a simple means of identifying words \-.Jhich 
should be treated in different ways with respect to the cache. 
Thus, the bit 11 sdv1.cache 11 has been defined, whose absence in an 
.5D~J forces al 1 requests for data from the corresponding segment 
to go directly to main memory~ and prevents the cache from 
loading_ data from this segment into itself. Such 
"non-encacheab 1 e segments" are. transparent to the cache, .that is, 
tne cache may never contain words from them and hence may never 
have a copy more recent than the copy in main storage. 

The remaining issues are the determination of which segments 
are encacheable, and ~hen the cache must be cleared. 
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TrlE ENCA~HEAi:$1LITY OE SEGMENTS 

From the considerations stated above, it should be clear 
that I /u buffer segments (e.g., t ty_buf, tape_data) are not 
encacheaole. Thus, any SD~~ made for these segments should 
prevent words from these segments from entering any processor's 
cache, as teletypes and tape controllers (via the Datanet and the 
I (11-1) 1nay update words in main storage which the cache could not 
observe. 

Similarly, lt is clear that data bas€s which are accessible 
to only one processor, i.e., the prds's of processors, are always 
encacheabl~. Even though prds's are created by some other 
processor than the processor for which they are intended (for all 
cases other than the boatload processor), there is never any 
difficulty in the intended processor not seeing a change made by 
the other processor, as the former has not started to run by the 
~ime the latter is finished with its prds. 

Pure procedure segments are always encacheable. Again 
putting off the issue of how these segments were written, 
initially, no module may write in these segments, and hence, a 
cache copy can never be less recent than the legitimate contents 
of the segment. 

In order to handle all other cases, the concept of 
'per-processor' can be mapped into that of 'per-process'. As 
long as the process-processor pairing remains unchanged, the 
se~~ents which are non-encacheable Cother than those already 
1nentioned) are those which· are writeable by one process and 
readable by another. ·Hence, stacks, linkage sections, pds's, 
Kst's, and programs are all encacheable. Initializer and 
answering service data bases are encacheable. Inter-user data 
oases in outer rings, and data bases such as the SST, tc_data, 
and descriptor s~~nents themselves are not encacheable. Any data 
base which is written only at system initialization (by the 
boatload processor) and read thereafter can never be changed 
after a non-boatload processor can fet~h its words into its 
cache; hence these segments (e.g., sys_info) are encacheable. 

. . 
, . 

'· )•1AKfNG THE ABOVE ST.RATEGY VIORK, ANO THE CLEARING OF THE CACHE 

Although the above strategy provides a 
·heavily-used segments are encacheable~ it 
least one unreasonable assumption, 
considerations. 

scenario whereby most 
is founded upon at 
and two unstated 

. . Tl1c pro.cess-processor pairing can not e.ie assumed 
· ;., : cor1s.tant. A processor rnay pass th rough many 

to remain 
processes . . , 
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5irnilarly, a process may be viewed as possibly passing through 
several processors. It is this latter view which provides the 
key for making the process-processor pairing ~"ork for the cache. 
If a process never changes processors, the Hords of its 
per-process encacheable segments (writeable data bases) will 
never appear in the caches of other processors, as we have stated 
that these segments are not readable by any other process. 
Similarly, no other processor may modify the words of this 
segment (assu1'1ing no read permission implies no write 1· 
premission). Hence, the copies of words of this ser;ment in the 
cache of the processor which has been running this process can 
never be less than up to date. If this process now switches 
processors, however, the new processor will acquire copies of 
these words in its cache. Still, there is no problem. Should 
the process switch back to the original processor, however, 
copies of words of the segment of interest are still in the 
original processor's cache, and are less recent than possible 
i11odifications made to the copies in main memory by the other 
processor. The solution is simple: Every time a process switches 
processors (easily determined from data kept In the APT), the new 
processor should invalidate the contents of its cache. 

The first unstated consideration is the determination of 
which segments are writeable to one process and readable to 
another. Scanning ACLs is one solution. A more reasonable ~ 
solution, which depends upon consideratidns stated in the ext 
section, is to observe the creation of SDWs for a particular 
segment. As long as only read or. read-execute-allowing SDW's are 
created for a segment, the segment Is encacheable, and all of 
these SDWs reflect this. Similarly, ts there ts but one SDW for 
the segment (i.e., only one process ts currently using it) it is 
encacheable, even if this SDW permits writing. If, at any time, 
a segment in either of these states changes into· the 
non-cacheabilitytate where one write-access and one read-access 
SDW exist, ALL 3DW's must be changed to reflect the 
non-cacheabiJ ity of the segment. Furthermore~ the caches of all 
of the processors must be cleared, to remove copies of words of 
this segment. This can be done via a modification of the current 
connect-fault mechanism, setting special· flags so that a 
processor receiving a connect f au 1 t wi 11 interpret the 1 at te r as 
a signal to clear its cache. 

SD~J's are modified or destroyed by three mechanisms other 
than the creation mechanism of the segment fault, considered 
aoove. Deactivation (resulting from reuse of AST entries or 
~e~nent destruction) destroys all SDW's for a given segment. As 
part of deactivation, all of the pages of a segment are forced 
out of core. As explained in the next section, this will clear 
the segment out of the system's caches page by page. Access 
changes cause an operation known as a 'setf au 1 ts' to be performed --.• 
on all existent SD~'s of a segment. This causes late~ ·segment ~ 
faults which will recalculate each process' access to the 
segment. The .encacheabi 1 i ty of the segment ~1i 1 l be recomputed at 
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those times. However, at the time the set.faults ts done, the 
segment's words must be driven out of the system's caches, if. it 
is currently encacheable. This may be done via the same· connect 
fault mecahnism as before. Termination of segments causes SDW's 
to be destroyed. While this can never make an encacheable 
se~nent non-encacheable, It may do the reverse, granting 
encacheabil ity at the time the last write-access SDW of a segment 
is destroyed. This could prove to be an important consideration 
in the case of a 1 ibrary procedure being updated by library 
1naintenance personnel. If cacheabll ity were not granted at the 
time the library maintenance personnel terminated the segment, 
ordinary users would not use the cache for this segment. 

Information concerning the nature of SDW's of a given 
segment is best kept in the AST entry for that segment, and In a 
per-SOW data base known as the 'system trailer', each of which 
have. enough free bits to record the necessary information for 
dynamic encacheabil ity computation. 

The encacheability of hardcore segment? is best determined 
from an SLT attribute, which comes from a system header 
attribute, defining the encacheability of hardcore· segments at 
system generation time. 

The modification of SDW's by bounds faults is not of 
interest, as it changes neither the mapping of segments into nor 
access to seg~ents. 

The second unstated consideration is paging . 

. PAGING 

The r~na1n1ng important issue is reflecting changes in the 
contents of main memory due to paging to the system's caches. 
The proposed solution relies on ·the fact that no program other 
than page control references a page frame of main memory between 
the time that access to the page frame is turned off and the time 
that access to the page frame is opened with the contents of some 
other page of the virtual memory in this frc(3me. This turning off 
of access occurs at the time that page control decides to replace 
a page, due to either lack of recency of use, or deactivation. 
Between the closing of access and the new opening of access, data 
1nay be read into this page frame from the paging device or disks, 
and page control may inspect or modify the contenti of this page 

.frame. Thi~ modification and inspection are done with special 
non-encacheable segments know as 1 abs-segs', which are 
essentially segments defined to be whatever it is desfred to look 
at or modify at the time that it is desired to do such. Hence, 
page control will always see the correct contents of the page. 
At the time that access is closed to a page, all of the 
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processors in the syst~n are notified to use the special verison 
of the 'CAMP' Instruction described above, to clear all words of 
this page out of their caches. Hence, by the time access is 
op•ned to the new page in that page fram~, there will be no words 
~f the old cont~nts in any processor's cache. 

OTHER CONS!QEBAT!ONS 

Directories are not encacheable. This Is because they are 
inspected and modified at segment deactiva~ion time via the use 
of a dynamically created SOW (resulting from· the use of an 
abs-seg). Jere the directory being referenced In this way 
encacheable, copies of words in any cache would not see changes 
1nade in this way. Alternatively, one could clear System caches 
and redefine the directory's encacheability at this time, but 
this seems a fairly expensive approach, especially In view of the 
1 ikel ihood that directory referencing patterns do not warrant the 
encacheabil ity of directories. 

The cache is not turned on until processor initialization, 
\'Jhich, for the boatload pro·cessor, i.s late in system 
initialization. This avoids having to deal with several memory 
1ilanagement policies used only during initial izatioh. 

Ring-z~ro patching must clear all system cache~, for it 
violates the encacheability rules for any read-only segment or 
single-process segment that it patches. 

Abs-segs in general are non-encacheable. These 'segments' 
are used to extend a process' address space to encompas main 
memory ~ages or segments (i.e., other processes' descriptor 
segments) not accessible by other means. Wer~ abs-segs 
encacheable, they might bring words into the cache of segments or 
pages which have already been removed from the c~che of this. 
processor, or established as not being . in the. cache of this 
processor. Furthermore, abs~segs are frequently used to inspect 
the result of 1/0 operations, which the c~che never sees. 

The cache must be turned off by the BOS toehold, when BOS is 
entered, or preferably before (to allow BOS to dump the cache as 
it was at the time some system problem occurred). The swapping 
of main memory images done by BOS necessitates that the cache be 
either off when BOS is entered, or maintained by BOS. BOS should 
not use the cache, as the performance of BOS was never an issue. 
Also, the cache should be turned back on Cimpl icitly clearing it) 
as processors are restarted from a ~ystem~trouble interrupt (the 
return-to-BOS-or-halt mechanism). 

There must be BOS software tb dump the cache, both to the 
printer/tape and to the DUMP partltion. Similarly, the FOUMP 
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printing mechanism must be rewritten to dump this Information. 

Multitasking plays havoc with many of the strategies 
described ab6ve, starting right at the process-processor pairing 
assumption. If multitasking ls ever implemented, some 
user-controllable segment attribute describing inter-task sharing 
1nust be defineJ (probably for other reasons as well), which would 
then be used in determining encacheabil ity. 

I c.JY !TAT I ON 
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