Multics Technical Bulletin MTB-054

To: Distribution
From: Bernard 5. Greenberg
Subject: Proposal for iMultics Cache Software

Date: March 21, 1974

This MTB describes a proposal for the implementation of
software for use of the 6100 Cache Store System with Multics.
The Cache and the advantages to be gained by its use are
described. The problems associated with its use on Multics are
described, and solutions proposed.

WHAT 15 T WHY SHO SE IT?

Tne ©61lUyd Cache Store System is a fast, random-access buffer
wemory, added to a 6000-series processor, at its port logic. It
is significantly faster than main memory (50 ns. basic access
time, as opposed to 1.2 us), and 1is a physical part of the
processor, as opposed to the memory hierarchy. It attempts to
keep copies of recently used data from in itself, in much the
sane way that Multics attempts to Keep copies of recently used
pages in main inemory. Thus, if the processor's various subunits
request some data from memory which has a copy in the cache, the
request will be satisfied by the cache unit, and no request to
inain memory will be made. This saves a great deal of time.

The cache thus forms the fastest Jlevel of a multilevel
memory hierarchy. Core, paging device (bulk store), and disk
would be the next levels in a Multics system with the cache. The
successful wuse of a cace depends on the patterns in which
prograins reference data, and those features (spatial locality of
reference) which facilitate this use are common to most programs.
Simulation studies by Honeywell predict that the use of the 6100
Cache Store System on a model 6070 (No EIS, no segmentation,
paging, or ring hardware), with four-way interlace and
half-microsecond core, would reduce the CPU time required by a
GCus CUBUL compilation by u40%, as opposed to the samne system
without the cache. As there is no reason to suspect that typical

Hdultics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Multics programs are that radically different from GCOS programs,
in their memory reference patterns, some comparable performance
improvement would not be unreasonable.

WIS R N OW DOES IT WORK?

The vl00 Cache Store System consists of 2048 36-bit words on
RAM bipolar chips. These words are organized into 512 blocks of
four words each. Each block can contain four consecutive words,
from a mod-4 boundary, from main storage. These blocks are
further organized into 128 ‘'columns', each containing four
blocks. The blocks in any single column can hold only certain
blocks from main storage. Thus, column 0 can hold block 0, block
128 block 256, block 384, etc. of main store. In general, column
n can hold any block n+l123*m, for any m. This in effect divides
main memory into 128 equivalence <classes of four-word blocks
competing for cache blocks in the same column. The cache works
by absolute address - it determines which address 1is being
referenced in main memory from the 24-bit final address presented
to the port logic by the Appending Unit. Thus, association of
contents with addresses is oblivious to segmentation. Associated
with the blocks of cache memory is a directory of 512 entries,
each entry describing the contents of .a corresponding cache
memory block., A single bit (FULL/EMPTY) describes 1if the
corresponding block contains valid information. A fifteen-bit
address field contains the upper 15 bits of the twenty-four bit
absolute address of the words in main memory to which the words
in the corresponding cache block correspond. The next seven bits
of this address are implicit, as they define the column in which
this block appears. The remaining two bits (24=15+7+2) select a
particular word of the four word block.

The cache is interposed between the Appending Unit, which in
a Multics processor nediates memory requests, and the port logic
of the processor, which s responsible for directing a memory
request (fetch, store, set a mask, etc.) and an absolute address
out of some processor port, based on the upper bits of the
absolute address, and either receiving data from or sending data
to the selected controller. Among the functions of this logic is
the sending of a request for service to the selected controller,
and receiving a reply when the request has been granted. The
processor nodule which initiates the request suspends its
operations until this acknowledgement is received,

The cache unit intercepts all of these memory requests. I f
the request is a simple read (NOT a lock-type ‘'read and clear',
as would be used by the stac, stacq, ldac, ansa, etc.,
instructions) the cache inspects the directory entries for that
column of cache which would contain the words being requested.
This means that four comparisons of the four 15~bit address

MTB=-05% ‘ Page 3

fields are done in parallel. The cache unit does not Jlet the
request for service go to the memory controller until it verifies
tnat none of the four addresses compare. (A FULL bit being off
prevents a successful comparison as well.) If a match is found,
the cache retrieves the stored words from the cache block whose
directory entry matches the requested address, and notifies the
Appending Unit that the data is available. Not only does this
retrieve the data with great rapidity, but enhances multiplexing
of the nemory controller, If no match is found, the request
proceeds to the meinory controller as usual. However, the cache
replaces the contents of some block in the appropriate column
with the two words which are returned from the memory controller.
What is more, the cache unit makes a second request on the port
logic to fetch the other two words to be stored in the cache
block. The acknowledgement is then given to the Appending Unit.
The block to be replaced is selected on a first-in-first-out
(FIFO) basis. This is . implemented by a two-bit counter
associated with each column of the cache directory.

Write-type requests go directly to main storage. Hence, the
cache never fetches words when a store-type Instruction is
issued. However, a compare is made with each of the directory
entry address fields in the appropriate column, and if a match is
found, the cache unit updates its contents with the data being
written,

Locking-type fetches (read-and-clear) also go directly to
main memory. The cache also purges the contents of a matching
vlock, if any, by turning off the FULL/EMPTY bit.

The cache can be turned on and off by a bit in the CPU mode
register, which s loaded by the LCPR instruction. Certain
faults also cause the cache to turn off. A special register
exists for controlling the modes of operation of the cache,
controllable by another variant of the LCPR instruction. Every
time the cache is turned on, it clears all of its FULL/EMPTY bits
to EMPTY, as it has no way of knowing what was stored in main
memory while it was off, and it should never contend that any
data that it might return are valid.

Two features have been added to the cache specifically for
Multics. An SDW bit has been defined, which, when off, tells the
Appending Unit to inhibit the cache from making any successful
address comparison. This has the effect of allowing some
segments to have words sorted in the cache and others not. Also,
a special variant of the CAMP (clear associative memory of PTWs)
instruction has been defined which clears the FULL/EMPTY bit of
any block in any column whose address in its directory entry
matches an address given as part of the instruction. This allows
clearing of an entire page out of the cache in two instructions,
As each one of these instructions must cycle through 128 columns,
doing the four-way compare with each, 25 microseconds is required
for this operation.

Page i _ MTB- o054

‘A special version of the CAMS (Clear associative memory of
SDWs) instruction has also been defined which turns off all of
the FULL/EMPTY bits at once, invalidating the entire contents of
the cache at one,

WHAT ARE THE PROBLEMS WITH THE USE OF THE CACHE WITH MULTICS?

The cache s an integral part of the processor - it is a
buffer between the processor's component units and main memory.
In #ultics, many active modules (processors, |0iM, Bulk store
Jnit, etc.) are connected to main memory. Any of these active
imodules may inspect or change the contents of amin memory.
Hence, the cache unit in a processor may hold copies of words of
main memory which have been changed there by the 1OM or another
processor since they were loaded into the cache.

Thus, systen activity which involves more than one active
inodule having access to any given word of <core must be
reconsidered in light of the cache. Since write~type requests by
a processor go through the cache, directly to main storage, a
word of cache storage never contains a word whose contents are
more recent than the corresponding word of main storage.
Difficulty arises only when a processor cache holds a word less
recent than a copy in main storage. This can only happen for
main memory words which are either 1) capable of being written
into by a non-processor active module, or 2) accessible to two
processors, at least one of which can write them. The use of
segmentation allows the grouping of data with various access
attributes into segments (e.g., only those segments known as '1/0
buffers' contain words which are subject to being written by
another active device than a processor leaving the issue of
paging 1/0 aside for a moment). The identity of segments which
can be written by one processor and seen by another (assuming for
the moment that the processors are to stay in the same processes)
is also an issue which can be handled = easily. Hence,
segmentation provides a simple means of identifying words which
should be treated in different ways with respect to the cache.
Thus, the bit "sdw.cache" has been defined, whose absence in an

aDW forces all requests for data from the corresponding segment
to go directly to main menory, and prevents the cache from
loading data from this segnent into itself. Such

"non-encacheable segments' are transparent to the cache, that is,
the cache may never contain words from them and hence may never
have a copy more recent than the copy in main storage.

The remaining issues are the determination of which segments
are encacheable, and when the cache must be cleared.

'

i

MT3- 054 Page 5

From the considerations stated above, it should be clear
that 1/U bpuffer segments (e.g., tty_buf, tape_data) are not
encacheanle. Thus, any SDW made for these segments should
prevent words from these segments from entering any processor's
cache, as teletypes and tape controllers (via the Datanet and the
luid) may update words in inain storage which the cache could not
observe.

Similarly, it is clear that data bases which are accessibhle
to only one processor, i.e., the prds's of processors, are always
encacheable. Even though prds's are created by some other
processor than the processor for which they are intended (for all
cases other than the bootload processor), there is never any
difficulty in the intended processor not seeing a change made by
the other processor, as the former has not started to run by the
time the ltatter is finished with its prds.

Pure procedure segments are always encacheable. Again
putting off the 1issue of how these segments were written,
initially, no module may write in these segments, and hence, a
cache copy can never be less recent than the legitimate contents
of the segment.

In order to handle all other cases, the concept of
'per-processor' can be mapped into that of 'per-process'. As
long as the process-processor pairing remains unchanged, the
seginents which are non-encacheable (other than those already
mentioned) are those which are writeable by one process and

readable by another. Hence, stacks, linkage sections, pds's,
kst's, and oprograms are all encacheable. Initializer and
answering service dJdata bases are encacheable. ' Inter-user data

bases in outer rings, and data bases such as the S§ST, tc_data,
and descriptor segnents themselves are not encacheable. Any data
base which 1is written only at system initialization (by the
bootload processor) and read thereafter can never be changed
after a non-bootload processor can fetch its words into its
cache; hence these segments (e.g., sys_info) are encacheable.

 MAKING THE ABOVE STRATEGY WORK, AND THE CLEARING OF THE CACHE

Although the above strategy provides a scenario whereby most
heavily-used segments are encacheable, it is founded wupon at
least one unreasonable assumption, and two unstated
considerations.

The process-processor pairing can not &e assumed to remain
©.ooconstant. A processor may pass through many processes.

Page © ' MTB-054

Similarly, a process may be viewed as possibly passing through

several processors. It is this latter view which provides the
key for making the process-processor pairing work for the cache.
| f a process never changes processors, the words of its

per-process encacheable segments (writeable data bases) will
never appear in the caches of other processors, as we have stated
that these segments are not readable by any other process.
Similarly, no other processor may modify the words of this

segnent (assunming no read permission implies no write
premission). Hence, the copies of words of this segment In the
cache of the processor which has been running this process can
never be less than up to date. If this process now switches
processors, however, the new processor will acquire copies of
these words in its cache. Still, there is no problem. Should
the process switch back to the original processor, however,
copies of words of the segment of interest are still in the

original processor's cache, and are less recent than possible
wmodifications inade to the copies in main memory by the other

processor, The solution is simple: Every time a progess switches
processors (easily determined from data kept in the APT), the new

processor should invalidate the contents of its cache.

The first unstated consideration is the determination of
which segments are writeable to one process and readable to

another., Scanning ACLs is one solution. A more reasonable
solution, which depends upon considerations stated in the ext
section, is to observe the creation of SDWs for a particular

segment. As long as only read or read-execute-allowing SDW's are
created for a segment, the segment is encacheable, and all of
these SDwWs reflect this. Similarly, is there is but one SDW for

the segment (i.e., only one process is currently using it) it s
encacheable, even if this SDW permits writing. If, at any time,
a segment in either of these states changes into the

non-cacheabilitytate where one write-access and one read-access
SDW exist, ALL JSDW's must be changed to reflect - the
non-cacheability of the segment. Furthermore, the caches of all
of the processors must be cleared, to remove coples of words of
this segment. This can be done via a modification of the current
connect~-fault nechanism, setting special- flags so that a
processor receiving a connect fault will interpret the latter as
a signal to clear its cache.

SDW's are modified or destroyed by three mechanisms other
than the creation mechanism of the segment fault, considered
apbove, Deactivation (resulting from reuse of AST entries or
segment destruction) destroys all SDi's for a given segment. As
part of deactivation, all of the pages of a segment are forced
out of core. As explained in the next section, this will clear
the segment out of the system's caches page by page. Access
changes cause an operation known as a 'setfaults' to be performed
on all existent SDW's of a segment. This causes later segment
faults wnich will recalculate each process' access to the
segnent. The encacheability of the segment will be recomputed at

iMTB-054 Page 7

those times. However, at the time the setfaults 1is done, the
segment's words must be driven out of the system's caches, if it
is currently encacheable. This may be done via the same connect
fault inecahnism as before. Termination of segments causes SDW's
to be destroyed. iWhile this can never make an encacheable
segment non-encacheable, it may do the reverse, granting
encacheability at the time the last write-access SDW of a segment
is destroyed. This could prove to be an important consideration
in the case of a 1library procedure being updated by llbrary
mnaintenance personnel., I1f cacheability were not granted at the
time the 1library inaintenance personnel terminated the segment,
ordinary users would not use the cache for this segment.

Information concerning the nature of SDW's of a given
segnent is best kept in the AST entry for that segment, and in a
per-SDW data base known as the 'system trailer', each of which
have. enough free bits to record the necessary information for
dynamic encacheability computation.

The encacheability of hardcore segments is best determined
from an SLT attribute, which comes from a system header
attribute, defining the encacheability of hardcore segments at
system generation time,

The modification of SDW's by bounds faults 1is not of
interest, as it changes neither the mapping of segments into nor
access to segments.

The second unstated consideration is paging.

PAGING

The remaining important issue is reflecting changes in the
contents of main memory due to paging to the system's caches.
The proposed solution relies on the fact that no program other
than page control references a page frame of main memory between
the time that access to the page frame is turned off and the time
that access to the page frame is opened with the contents of some
other page of the virtual memory in this frame. This turning off
of access occurs at the time that page control decides to replace
a page, due to either lack of recency of use, or deactivation,
Between the closing of access and the new opening of access, data
may be read into this page frame from the paging device or disks,
and page control may inspect or modify the contents of this page
frame, This modification and inspection are done with special
non-encacheable segments know as 'abs-segs', which are
essentially segments defined to be whatever it is desired to look
at or modify at the time that it is desired to do such. Hence,
page control will always see the correct contents of the page.
At the time that access 1is <closed to a page, all of the

Page 8 MTB-05k4

processors in the systen are notified to use the special verison
of the 'CAMP' instruction described above, to clear all words of
this page out of their caches. Hence, by the time access |is
opened to the new page in that page frame, there will be no words
of the old contents in any processor's cache.

OTHET S1D TIONS

Directories are not encacheable., This is because they are
inspected and modified at segment deactivation time via the use
of a dynamically created SDW (resulting from - the use of an
abs~seg). vWere the directory being referenced in this way
encacheable, copies of words in any cache would not see changes
made in this way. Alternatively, one could clear system caches
and redefine the directory's encacheability at this time, but
this seems a fairly expensive approach, especially in view of the
likelihood that directory referencing patterns do not warrant the
encacheability of directories.

The cache is not turned on until processor initialization,
which, for the bootload processor, is late in system
initialization. This avoids having to deal with several memory
inanagement policies used only during initialization. :

Ring-zero patching must clear all system caches, for it
violates the encacheability rules for any read-only segment or
single-process segment that it patches.

Abs-segs in general are non-encacheable. These 'segments'
are used to extend a process' address space to encompas main
memory pages or segments (i.e., other processes' descriptor
segments) not accessible by other means. Were abs-segs
encacheable, they might bring words into the cache of segments or

pages which have already been removed from the cache of this .

processor, or established as not being .in the cache of this
processor. Furthermore, abs-segs are frequently used to inspect
the result of 1/0 operations, which the cache never sees.

The cache must be turned off by the BOS toehold, when BOS is
entered, or preferably before (to allow B0OS to dump the cache as
it was at the time some system problem occurred). The swapping
of main memory images done by BO0OS necessitates that the cache be
either off when BUS is entered, or maintained by B0S. BOS should
not use the cache, as the performance of BOS was never an issue.
Also, the cache should be turned back on (implicitly clearing it)
as processors are restarted from a system~-trouble interrupt (the
return-to-80S-or-halt mechanismn),

There must be BOS software to dump the cache, both to the
printer/tape and to the DUMP partition. Similarly, the FDUMP

MTB-054 Page 9

printing mechanism must be rewritten to dump this information.

Multitasking plays havoc with many of the strategles
described above, starting right at the process-processor pairing
assumption. 1 f multitasking is ever implemented, some
user-controllable segment attribute describing inter-task sharing
must be defined (probably for other reasons as well), which would
then be used in determining encacheability.

| T10
Address all comments to:
Bernard Greenberg

CisL
575 Tech Square

