Multics Technical Bulletin MT8-053

To! Distribution
From: Robert A, Freiburghouse
Suhject: A Unified Command Language (Revision 1)

Nate? March 20, 1974

This document defines a command tanguage and command
processor that is intended to be 3 user selected alternative to
the current Muiticy command processor. The lanjuage is suitable
for use as an interactive or absentee job controt languagey, and
it also (s a3 suitable fanguage in which to perform simple
calculatijons,

Lesign QOblectives

1. Provide 3 single unified language containing the essential
functions of calcy abbrev, do, exec_com, absentee anrd the
current Multics command |lanqguaqge.

?e Provide a command language that can catll subroutines and
functions written in standard languages in a natural manner
passing arguments and receiving values having any of the
scalar data types of the standard |anguages. Any procedure
whose arjuments and return vatues are scalars can be [nvoked
from the command processor exactly as it would be invoked
from another orocedure, thus elliminating the need for active
functions and commands to be written In a nonstandard cstyle,

3. Provide a ltanguage whose implementation wilt perform 1
given operation using less CPU time and storage than used by
the existing command processor and related facilities to
perform the equivalent operation.

General Concepts

The command lanquage Is a very simple algorithmic tanguage
whose targest syntatic unit is a <command>. Each <command>» is 3
conditional or unconditjional imperative statement which can
contain references to named varlables, expressions, and other
<ccommand»s. Expressions are the familiar parenthesized infix and
prefix expressions of Fortran or PL/I.

Multics Project internal working documentation,. Not to be
reproduced or distributed outslide the Multics Prolect.

Page 2 - MTB-053

The command processor is ar interpreter that executes 3
sequence of <command>s. Interpretation of each <command> |is
performed as a two stage process., Nuring the first stage, the
<command> (s prncessed as a sequence of characters without regard
tc Its syntatic constructlor or purpose as a command., It is
during this first stage that abhreviations and parameters are
replaced as described later, Curingy the second stage of
interpretation, each <«command>» {3 parsed (identified) and
executed, :

The command processor can be called by a <command>. —ach
invocation creates 3 nen set of arguments, a new set of iocal
variables, a new command Iinput ¢§file, and a new ‘“current®
abbreviation file.

cp input s1 52,450
or

co input
or

cp

where input identifies the command input file, and s1 S2...5n are
the strings which are arguments of the new invocation of the
command processor. If input is omitted, commands are read from
user_input, A more precise definition of the relationship
between an invocation of the <command processor and its I/0
attachments is alven In Appendix Aa.

Parameter Substitution and Abbreyiation Repiacement

?efore each <command> is executed, the following steps are
performed:

1. Tach &K or &rK, where K is an <intejer>, Is replaced by
the Kth a3argument +to this invocation of the command
processor, If no such argument existsy the &K or &rK 1is
removed. The repfaced text is rescanned from
left-to-right, Parameters of the form §&rK cause the
replaced text to be quoted and any contained quotes to be
doubled,. This step is complete when the first § or
newline not contained in quotes is encountered.

)

2. If the string produced by step 1 begins with an !, the
is removed and processing continues witn step 3.

If the current instance of the abbrev I/0 switch is
attached, the flifle Is used as an abbreviation file. Any
token defined by the abbreviation file is repiaced by
text from the abbreviation files The repiaced text is
not rescanned. The first token only feature of abbrev is
supoorted,

MTR-053 Page 3

?, Fach occurrence of [<expression>») i3 evaluated and the
- value of the <expression> i3 wused to replace the
[<expression>]s The value must be a character string.

4, TIf the input string does not begin with a ., perform the
following steps?)

3. Parse the input string using the following syntax:
<symbol-lisf>:§= <s§mbol>...
csymbol>:t= <quoted sfring>|<ﬁnouoted string»
<quoted string>tt= “<char>..."
<char;::= ""lAny ASCII character except*
<unquoted sString>it= <notend>.s.

<nqtend>::: Any ASCII character except blank,
taby newline, or 3 '

b, If an <unquoted string> begins with (, it must satisfy
the syrntax {<expression>),

C. Surround all <urquoted string>»s except those described
in be With QUOTeS. .

de Rewrite the Input string as:?
eCall s1 (524 S3y seay SN)

Note, the actions performed for step 4 altow calls to be
typed with a minimal syntax very similar to the syntax wused by
the <current command Drocessor. Parentheses are used to embed
expressions into this type of command. Saquare brackets are used
a5 active functions in any command tine and are processed as part
of the string processing that occurs prior to execution of the
command as described in step 3. The special signifjicance of [1 ()
' &4 and ! can be suppressed by use of the escane character 7,

Note that by using abbreviations the user can eliminate the
. required on each command and can change the syntax of commands
to a limited extent.

Page &L MTB=-053

The_Syntax and Semantics of Commands

<command> = <attach>]|<detach>|<do>]|<exit>]
<while>i<cift>] <clet>]<calt>|<creturn>j<print>|
<on>|<agbort>|<for>

<attach>»it= ,attach<switch> <source>
<switch>:i= command_inputjuser_inputfabbrev

<sonurce>ti= switch <expression>|
path <expression>|
string <expression>

causes the attachment of the current instance of the <switch>» to
be "pushed down™, and the <switch> to bhe attached to the
<source>, If <source> is string <expression> the character
string value of the <expression> serves as the file,

<detach>?$i= ,datach <switch>
causes the attachment of the current instance of the <switch> to
be “'popped up",_fhaf'is, replaced by the previous attachment of
that <switch>,

<do>3= ,dn <3roun>

<group>ti= <command>»| (<command>l t<command>].,.)
causes the <command»>s of the <agroup> to be executed ty the

current invocation o0f the command processur, Normally a <do> is

used as part of a compound <command> such as <if>, <while>, <for>
or <an>, .

<exit>?t= ,exit
causes the execution of the current <do> to be terminated and the
<comrmand> following the <do> to pe executed, It is an error to
execute an <exit> sutside of a <do>,

<while>tti= ,whilecexpression><do>
If <expression> is true, the <do> 15 evaluated; otherwise, it is

not. Uporn comptetion of the <do>, the <while> is repeated. Tha
<expression> must yield a logical value.,.

MTB=-0E3 Page S

<if>it= ,ifcexpression><do>

It <exnression> is true, the <do> |3 evaluated: otherwise, it is
not, The <expression> must yield 3 togical value.

<fet>it= ,let<name> be <expression>

causes =<name> to be defined as 3 local variable allocated in the
current stack frame. The value of the variable 1is the value
produced by evaluation of the <expression>,

<call>2s=
.call <expression>{l{<cexpression>[,<expression>l.s.1l)

Evaluation of the first <expression>» must vield a string giving a
pathname that identifies an oblect segment entry point.

The argument <expression»s are evaluated and converted %o conform
to the data types specifled by the entry definition of the oblect
segment as described tater.,

<return>tt= ,raturn

causes control tn return from the current invocation of the
command processor,

<print>:i= ,print <expression>(,<expression>]l... ’

causes the wvalue of each <expression> to be writter on
yser_outout in a sultable format,

<CON>i1i1= ,on <expression> <do»>

causes the <dn> to be established 3= an on-unit for the condition
identified by the string value of the <expression>, The
<expression> must yleid a strina value. Tha execution of an
<ex it> or the normal termination of the <go> causes control to
return toc the siagnaller, If control is to be returned to the
<command> following the <command> whose eaxecution causad the
signal, an <abort> must be executed,

<abort»:i1:= ,abort

cauces execution of the <command>» following the <command> whose
execution caused the most recent signal,. It is an error to
exncute an <abort> not continued within g <do>, used as an
or-unijt,

Page 6 MTB=-053

Let n ©be the number of <expression»>s, FOr k=1424essn, the kth
<expression> is evaluated and its resulting value assigned to the
focal variable <name>, and the <do > is evaluated, R <far>
defines its <«<name> as a local varlable just like a <fet>,

<name>$ t= ,<jidentifier>

<identitijer>ii= <letter>[<letter>|<digit>|=]..s

<cexpression>st= <infix>|<prefix>|{<pasic>

<infix>i1t= <expressior><infix-on><expressjinn>

cinfix~op>tt= +|-|*}/]**|= == |>= J<= J<|>181LI11

<prefix>it= {+1-)"I<cexpression»>

<basic>ir= {<expresison>)]<name>|<constant>{<function>

<constant>i!= <jdentifier>|<guoted strina>|<integer>
f<real>|trueffalselnull

<integer»lt= <digit>ses

<real>»ss=
(<1nfeqer>.[<infeqer>ll.<1nfeqer>}[e[+|-]<infeger>]

<function>!!= <cexpression>({<expression>{,y<expression>»lses])
A function works like a calli, excepnt that a return value is

expected and is converted to the corresponding command {anguage
data fvpe.

Varjables and Data Tvpes

A Iocalrvériable is allocated in the stack frame of the
.command processor, Fach variable is capable of possessing values
of any data tyne,

The possibhle Aata types are?

integer (fixed bin(35))
real (filoat dec(18)}
foaical (bit{1))
string (char{256) varying)
address (pointer, pointer)
These data types are designed to accommodate all PL/Z/I and Fortran

data types excepnt complex numbers. The conversions between these
types and PL/T types are given in the following section,

MTa-0532 _ Page 7

A variable is defined by the appearance of its <name> in a
<let> or <tor>, Recause the command language has no concept of
multiple SCODn2S of mnames and no Adeclared attributes, no
declarative statements are required, The type of a varijiable is
the type of the value it currently possesses,

Argument Conversjion

Tf an entry definition specifies no parameters, the
arguments, if any, are passed without conversion.

Tt the entry definition specifies a single one-dimensional
array, the arguments are converted fo the data type of the array
and each 3rgument is transformed into an etement of the array.
The lower tound of the array descriptor is set to { and the upper
rourd is set to ny, where n is the number of arguments given,
Usirg this scheme,y, 3 PL/I procedure can easily receive a variable
numher of arguments while remaining witrin the standard language.

It the entry definition <specifies one or more scalar
arguments, each argument is converted to the gata type of its
corresponding parameter, Tf an argument is a reference to a
local wvariable, it is passed oy-reference?! otherwise, it is
passed by-value,. When an argument is passed by=-reference, |t Is
corverted to conform to the data type of the corresponding
parameter, and upon return it is corverted nack to the orlginal
type of the araument,

Tf the expected data type of a called orocedure is ary kind
of PL/T arithmetic data, both integer and realt can be converted
to the expected type. An return, all PL/I arithmetic types,
excent complex, can be converted ejther to integer or real.
Ltarge decimal values are rounded and a warning produced.,

Aggregate values cannot be passed or recejved,

PL/7T nit strings, other than Dbit (1), are converted to
character strinas, :

Fxcessively tong (>256) character strings are truncated with
A warning., '

Recause the command languane stores addresses as pointer
pairs, it can hold pointer, offsety, label, entry, format, file,
and area values as address vatues,

Page 8 MTB=053%

Appendix A

Fach invocation of the command processor establishes a new
instance of three ‘I/0 switchesi command_input, user_input, and
abbreve These three switches 3re attached in the following
manner,

command_input?

ITf ¢this invocation of the command processor received one or
more arguments, the first argument 'identifies the file to
which command_input is attached, If the first argument is
of the form

switchi{<identifier>)

the command_innut is attached as a synonym for the I/0
switch whnse switch name is <identifier>, If the first
argument is given but is not of this form, It must be a
pathname, and command_input is attached to the file
identified by that pathname,

If no arguments are given, command_input is attached as a
synonym for the previous instance of command_input. If no
previous instance existsy it is attached as a synonym for
user_input,

user_input:
user_input is attached as a synonym for tne previous
instance of user_input. If this is the first Instance, |t
is attached as a synonym for user_ijo.

abbrev?

abbrev is attached as a synonym for the previous instance of
abbrev,. I€ this is the first instance it is not attached,

