v

MULT!ICS TECHNICAL BULLETIN MTB- 051

To: Distribution
From: F. A. Canali
Date: March 12, 1974

Subject: MNew Tape DCHM

e e e e e e Se y mm e M e SN e e e M S M e Em e MmN W SR ek MR e Se e e e e

ORGANIZATION OF THIS DOQCUMENT

This document 1is divided into three parts. The first, an
introduction, discusses the oreganization and purpose of this
document, motivation for the proposals made herein and the
logistics for Implementation of the proposals. The second part

discusses the design of user interfaces and the third part
discusses special interfaces.

PURPOSE

The purpose of this document is to discuss motivation for
designing an interface between the ANS1 standard taoe DIM and the
current tape device control module (tdecm) which may eventually be

used as a replacement for the current tape device control
module.

MOTIVATION

The current tape device control module provides minimally
adequate functional capability for present and foreseeable use of
tapes on the Multics system. llowever, desirability of a piece of
system software is not founded on functional capability alone,
but also on a number of other factors, collectively called
aesthetic appeal, a major part of which is the ability to easily
support new applications of system software {including
modifications to current applications.)

Three factors affect the ability to support new
applications.

tultics project internal working documentation. Mot to be
reproduced or distributed outside the Multics project.

MULTICS TECHNICAL BULLETIN MTB- 051
Page 2 Introduction Part 1

i) Ease of use.

The interface between applications and the system
should be clean and simple. System software should provide
adequate services of a routine nature so that applications
of the system need only be concerned with their own
particular tasks and require a minumum of fussing with the
system interface. In no case should system software add
unnecessary 'hair" to an interface even in the name of
efficiency.

ii) Ease of understanding.

Application programs should be able to be written and
modified with a minimum Iinvestment of programmer time in
studying or referencing system interfaces.

iil) Integration into the total system.

The use of a particular piece of system software should
feel natural to programmers using it who are familiar with
the overall systen.

The current tape DCM communicates with users primarily
through the tseg data base. Perusal of the tseg data base
documentation, reproduced in appendix C of this document, should
convince anyone that its use is somewhat less than <c¢clean and
simple, A user of the current tape DCM has only one entry point
which he calls to perform reading, writing and tape positioning,
which of these functions to be performed being determined by tseg
stuffing. In addition to this unnecessary "hair" a user of the
current tape DCM must keep track of his own buffers within the
tseg data base, a routine and unnecessary task,

The new tape DCM proposed in this document will adopt the
philosophy of supplying separate entry points for various tape
operations to be performed instead of tseg stuffing., There will
be a structure passed between user and DCH which will be much
smaller than the current tseg and will contain only data not
usually subject to change during the operation of a program using
a tape. Buffer allocation and optional error recovery will be
handled by the DCM, obviating the need for user programs to
perform this onerous task.

The new tape DPCM will be designed to be fully integrated
with the tape registration and mounting package now being
written. Thus, the implementation of the DCM proposed in this
document will present users with a more unified and internally
consistent tape interface.

~

MTB-051 MULTICS TECHMICAL BULLETIN
Part 1 Introduction Page 3

LOGISTICS

It is believed that the interface herein presented can be
implemented in rings higher than the hardcore ring.

Let me make it perfectly clear that three phases of
installation are proposed and that while it is believed that the
interfaces presented in this document have been designed in
sufficient detail and generality to allow replacement of the
current tape DCM the author will only accept responsibility for
installation of the first phase.

Phase one.

The new DCM would be installed with the AMS!I standard
tape DIM, It would not replace the current tape DCM but
would merely provide a simpler interface to it for the new
ANS1 standard tape DIM. The new DCM would use the current
NDCM to actually perform tape operations, the tseg data base
and buffers being hidden in the segment used to communicate
with user programs.

Phase two.

The new DCM would replace the current DCM and would be
the sole interface between user programs and the tape
drives. Buffers would remain hidden in the segment used to
communicate with user programs. Data would still be moved
to/from wired down buffers for input and outnut and part of
the new tape DCM may have to be in ring zero through this
phase. A simulator of the current tape DCM, which will run

in the wuser ring, may be written for unconverted user
programs.

Phase three.

An interface with the new GIM which is now under design
would be incorporated into the tape DCM.

MULTICS TECHNICAL BULLETIN MTB-051
Page User Interface Part 2

BUFFERS

Input and output of physical records would be provided
through buffers. A call to read a record would result in the
address of a buffer of information being passed to the calling
user program (usually, and hereinafter refered to as, a DIM.)
Similarly, to write a physical record a DIM would make a call to
tapelio__ to allocate a buffer for use by the DIM for data
stuffing, followed by a call to tapeio_ to write the stuffed
buffer. The number of buffers available to a DIM may depend on
the maximum buffer size the DIM expects to use, a quantity the
DIM specifies during initialization of the tapeio_ package. A
max imum buffer size of 8192 characters is currently nlanned.

A special buffer, called the error recovery huffer, will
always be available to a DIV for use in recovering from
conditions such as end of volume, This buffer will participate

in output only on a synchronous basis and no guarantee will be
made concerning the integrity of its contents after participating
in a write operation., The error recovery buffer will always be
8192 characters in length regardless of the maximum block size
specified by a DIM during initialization.

Buffers used by tapeio_ may be considered to be in one of
five states:

(1) Free

A buffer contains no useful data and is available
for allocation to a DIM when a write buffer is
requested, or is available for wuse as a read
buffer.

(2) Allocated A buffer is In use by a DIM. It may have been
allocated as a write buffer for the DIM or given
to a DIM when a read request was issued and the

buffer contained the desired data from the tape.

(3) Busy - A buffer is participating in an input or output
operation. Either it 1is on the write behind
queue and contains data to be written to tape or
it is on the read ahead queue and data will be
read from tape into the buffer.

(L) Suspended

A buffer contains data but because of an error on
tape write behind or read ahead was terminated.
A suspended buffer will be allocated to a DIM
only if a buffer is needed and no free buffers
exist. I1f any suspended buffer is allocated all
other suspended buffers will have their status
swi tched to free.

~

MTBE-051 ’ MULTICS TECHMICAL BULLETIN
Part 2 User Interface Page 5

(5) Chaos - A buffer is in a state of chaos if a write
request Is made specifying the buffer and a tape
error is signaled. The buffer remains in a state
of chaos while a DI handles the condition
raised. If return is made from the condition the
buffer is switched to the busy state by being put
onto the end of the write behind queue. If no
return is made from the DIMs condition bandler
(I.E. a DIM performs a non-local goto out of the
condition handler) the buffer will be assumed to
be free. See the discussion of error handling.

ENTRY POINTS

This section describes a list of proposed entry points to
tapeio_ which will be available throurch gates, with calling
sequences and a short description of what each does. It should
give the reader the general flavor of the proposed DCM.
Arguments used are:

cP - Control pointer. A pointer to the control structure,
given to a DIM by the tape registration and mounting
package, used to identify a tape drive.

bp - Buffer pointer. A pointer to a buffer which is
available for writing or which contains data which has
been read from tape.

oP - A pointer to a structure used in describing order codes
to perform.

code - A return code given on each call to a tapeio_ entry
point which is an error_table_ code.

count - A count of characters in a bhuffer. It is a fixed
bin(17) number.

sP - A pointer to the software status block.

ring. # - A ring number, It is a fixed bin(3) number.

hs - A bit(72).hardware status.

The following are the propeocsed entry points available to a
DIM.

MULTICS TECHMICAL BULLETIN MTB-051
Page b User Interface Part 2

get_buffer(cl,bP,code)

This entry will allocate a write buffer for a DIM and
return’ a pointer to the buffer. If no free buffer exists
which can be allocated then:

(i) If read ahead buffers exist the most recently read
buffer in the read ahead gqueue will be returned and
the tape backspaced one record.

(ii1) if write behind buffers exist tapeio_ will wait until
a write buffer becomes free and return that buffer.

(iii) If a suspended buffer exists all suspended buffers are
marked as free and one of these will be given to the
DIM.

(iv) A1l buffers are already allocated to the DIM so the
code is set to indicate an error and return is made to
the DIM with the buffer pointer set to null.

release_buffer(cP,bP,code)

This entry will <change the state of the specified
buffer from allocated to free and the buffer pointer will be
reset to null,

read(cP,bP,count,code)

This entry will return a pointer to the next Jlogical
record and set the count to the number of characters in the
record. |f read ahead was not previously in effect it wil]l
be initiated. If the previous call to tapeio_ was an output
operation (write, write eof) no buffer will be returned and
a logic error will be signified in the return code but write
behind will continue.

write(cP,bP,count, code)

This entry will place the specified buffer on the write
behind queue and eventually write the number of characters
specified to tape. I1f read ahead was previously in progress
all read ahead buffers will be freed and the tape backspaced
the appropriate number of records before writing begins.

MTB- 051 MULTICS TECHNICAL PDULLETIN
Part 2 User Interface Page 7

synchronize(cP,code)

This entry will synchronize tape operations before

returning. 1f read ahead is in effect all read buffers are
freed and the tape backspaced appropriately before
returning. |If write behind is in effect return will not be

made until all writes are complete and all the write behind
buffers have been freed.

order_code(cP,oP,code)

This entry will perform order codes on a tape in a
write behind fashion.

sof tware_status(cP,sP,code)

s entry will return a npointer to a structure

-
]
ibing the software status of tapeio_.

hi
describi

synchronous_read(cP,bP,count, code)

This entry point will be similar to the read entry
point except that the read operation 1is performed in a
synchronous manner.

synchronous_write(cP,bP?,count, code)

This entry point will be similar to the write entry
point except that the write is performed in a synchronous
manner.

synchronous_order_code(cP,oP,code)

This entry point will be similar to the order_code
entry point except that the order codes are performed in a
synchronous manner,

promote(cP,ring_#,code)

This entry will set ring access to the tapeio_ data
base and associated tape drive. It will Tgnore attempts to
set ring access to rings lower than the calling ring.

open(cP,code)

This entry will be called by a DIM to cause tapeio_ t
initialize in preparation for using a tane.

close(cP,code)

This entry will be called by a DIM to perform cleanup
after having finished with a tape.

MULTICS TECHNICAL BULLETIN) MTB-051
Page 8 liser Interface Part 2

restack_buffers(cP,code)

This entry will restack all suspended operations onto
the write behind queue. (See appendix A on error recovervy.)

TAPE _ERRORS

A}

An error on a tape drive will be detected on the next call
to tapeio_ after the error occurs. Recovery and restart of the
operation from the point of error will be attempted as many times
as specified in the error_retries field of the control structure
(see definition of control data structure below.,) If the error
recurs on all retries a "tape_error_" condition will be raised
and a DIM may wuse the software_status entry point to gain
information concerning the hardware status and the status of
buffers which may have been queued on the device. See appendix A
for an example of a DI error recovery procedure.

The tape_error_ condition will be raised during read ahead
when a call to the read entry point is made which would access
the read buffer in which the error occured. The tape_error_
condition is raised as soon as possible when 1t occurs during
write behind.

STRUCTURES

The following structures are proposed for communication
between a DIM and tapeio_.

(A) ORDER CODE LIST

dcl 1 order_codes based(ol),
2 number_of_codes fixed bin(35),
2 codes(0 refer{number_of_codes)) unal,
3 operation char(3),
3 count fixed bin(8):;

The meanings attached to the various elements of
this structure are:

number_of_codes - The number of order codes in the codes
array.
operation - A particular operation code to be

performed on the tape.

MTB=-051 MULTICS TECHMICAL BULLETIN
Part 2 User Interface Page 9

count - A count associated with each order
code. 1t may be the number of times
the order code is to be performed or
an argument associated with a
particular order code as a modifier.

See appendix B for a list of the proposed order
codes and the significance of the count for each.

(B) SOFTWARE STATUS

dcl 1 software_status based(sP),

volume char(6),

file fixed bin(17),

error_buffer ptr,

counts,

3 total fixed bin(1l7),

3 free fixed bin(17),

3 allocated fixed bin(17),

3 busy fixed bin(17),

3 suspended fixed bin(17), .
“hardware_status bit(72) aligned,
status_code fixed bin(35),
suspended_ops fixed hin(17),
suspended_buffers(0 refer(suspended_ons)),
buffer_ptr ptr,

count fixed bin(17),

error_count fixed bin(17),
suspended_order_codes unaligned,
4 number_of_codes fixed bin(35) initial(l),
4 operation char(3),

L count fixed bin(8);

NN

N T NN

W W W WN

The meanings attached to the various elements of
this structure are:

volume - The wvolume identification of
the attached tape.

file - The file numbher of the current
file on the tape.

error_buffer - A pointer to the special 8192
byte error recovery buffer.

total - The total number of buffers
which exist in all states.
(excluding the error recovery
buffer)

free - The number of free buffers

available to a DIM,

MULTICS TECHNICAL BULLETIN

Page 10

(c)

allo

busy

suspended

hardware_status

status_code

suspended_ops

buffer_ptr -
count -
error_count -

suspended_order_codes

CONT

MTB-051

User Interface Part 2

cated -

ROL DATA

dcl

1 tapeio based(cP),

The number of buffers which
have been allocated and are in
use by the DIM,

The number of buffers
participating in input or
output operations,

The number of. buffers which
have been suspended due to an
error on the tape.

The hardware status for the
error associated wi th the
suspended buffers.

An error_table_ type of code
indicating the nature of the
hardware status.

The total number of operations
which have been suspended due

to a tape error. It includes
the number of read or write
operations with associated

suspended buffer plus the
number of order code operations
which have been suspended.

A pointer to a suspended
buffer.

A count of the number of
characters of data in the
suspended buffer,

The offset in the suspended
buffer at which the error
occured, if available, or zero.

An order code which was
suspended, suitable to be given
directly to the order_code
entry point as an order code
structure. It contains only a
single order code which was
suspended.

2 user_area_ptr ptr,

'

MTB-051

Part 2 User

NN

MULTICS TFCHNICAL RULLFTIN
Interface Page 11

user_area_length fixed bin(17),
buffer_size fixed bin(17),
error_retries fixed bin(17),
modus_operandi,

3 mode fixed bin(17),
3 synch_flag bit(1l),
3 start_read_ahead bit(1);

The meanings

this structure are:

user_area_ptr -

user_area_length

buffer_size -

error_retries -

mode -

synch_flag -

start_read_ahead

attached to the various elements of

A pointer to a region within the
tapeio_ data base which is available
to a DIM,

The length of the region pointed to
by user_areo_pcinter.

The maximum block size a DIM expects
to handle. The number of buffers
available to a DIM is computed from
this figure at the time of the DiIMs
call to the open entry point.

This number specifies the number of

times taneio_ will retry an
operation in error before giving up
and raising the tape_error_

condition.

This specifies the mode of read or
write operations.
0 - binary

1 - 9 mode

2 - ascii/ebcdic (1)

3 - bed

h - ebcdic (1)

5 - ascii (1)

This switch specifies that
operations are to be performed

svnchronously.

I|f this switch is set during a DIMs
call to the attach entry point read
ahead is beguin before returning.

(1) Translate feature must be

order to use this mode.

installed at an installation In

MULTICS TECHNICAL BULLETIM MTB~ 051
Page 12 User Interface Part 2

MOTES

There will be several ways of doing synchronous input and
output. The synchronous_read, synchronous_write and
synchronous_order_code entry points are provided for convenience.
Another method of performing synchronous tape operations will be
to set the synch_flag before the call to the attach entry point

and leave it set thereafter. A DIM may perform synchronous
output simply by using the error recovery buffer for all calls to
the write entry point. This method, however, is discouraged

since it inhibits error recovery. Any DIM using this method will
do so at its own risk.

Calls to the write and release_buffer entries will cause the
buffer pointer passed to be reset to null unless the pointer
specifies the error recovery buffer.

The synch_flag will supercede the start_read_ahead flag
during calls to attach. If both are set no read ahead will
begin.

An end of file condition on a read operation will cause an
error code to be passed back from a read or read_synchronous
call, rather than the tape_error_ condition being ralsed.

MTB-051 MULTICS TECHNICAL BULLETIN
Part 3 Special Interfaces Page 13

THE RING OMNE INTERFACE

The ring one interface will exist primarily for use by the
tape registration and mounting package. It will deal with tape
drive allocation and drive dependent information which should not
be alterable in higher rings. O0f course, ring one procedures
will have the interfaces defined in the previous section of this
document available, the interfaces defined in this section being
in addition to those defined in part 2.

EXPANDED USER INTERFACE

An expanded list of order codes will be available for ring
one procedures calling the order_code entry point. Appendix B
indicates which particular order codes will be executable from
ring one only.

No checking will be done which prevents a ring one caller
from destroying the tape label,

ENTRY POINTS

The list of entry points defined in this section is proposed
as an interface to the ring one tape registration and mounting
package. Arguments used are as stated in the corresponding
section of part 2 of this document with the following additions:

dp - This signifies a pointer to a user defined area having
the same structure as the tape data block defined
below. The tape data block will contain information
relating to the status and characteristics of
individual devices.

drive_# - A fixed bin(6) number containing the device address of
a tape drive

The ring one entry points are:
attach(cP,code)
This entry point will allocate a drive from the list of

drives available for user use. The control segment for the
drive is created and its pointer is returned to the caller.

MULTICS TECHNICAL BULLETIMN MTB- 051
Page 1L Special Interfaces Part 3

detach(cP,code)

This entry point returns a drive to the list of unused
devices on the system, Cleanup is performed, the control
segment s deleted and the control pointer reset to null.

priv_attach(cP, code)

This entry point 1is similar to the mount entry point
except that reserved devices are also available for
allocation to the <caller and no limit is enforced on the
number of drives which may be attached to a process.

add_drive(dP,code)

This entry point adds a drive to the 1list of devices
attached to the system. A tape data block will be created
and the Information pointed to by dP will be used to define
device characteristics (e.g. 9 track, reserved.)

delete_drive(drive_#,code)

This entry point will delete a drive from the list of
devices available on the system.

tape_data_lookup(cP,dP,code)

This entry point will look up the tape data block
associated with a tape drive and copy it into the area
pointed to by dP, If the control pointer is non null the
drive associated with the given control segment will be

looked up. |f the control pointer iIs null the drive number
in the structure pointed to by dP will be used for the
lookup.

tape_data_change(dP,code)

This entry point will cause a tape data block overlav.
The tape data block having the same device address as in the
structure pointed to by dP will be overlaved with the
information pointed to by dP.

ki11_io(cP,code)

This entry point stops all tape operations as soon as
possible and frees all buffers. The tane will be left in an
anomalous state. This entry should be called only in very
special cases (e.g. when a user hangs up) and with care.

MTB=~ 051) MULTICS TFECHMICAL BULLETIN
part 3 Special Interfaces Page 15

TAPE DATA BLOCK

An additional structure defined for ring one interfaces s
the tape data block. It exists within a ring one segment and
there is one tape data block for each tape drive on the system.
The following format is proposed for the tape data block:

dcl 1 tape_data_block based(dP),
mount_time fixed bin(71),
dew_list ptr,

process_id bit(3G),
error_count fixed bin(17),
control_ptr ptr,

file_no fixed bin(17),
volume char(8),

drive_no fixed bin(g),
density fixed bin(8),
drive_flags,

3 reserved bit(1l),

3 trackS bit(l),

3 ringin bit(l),

3 protected bit(1l);

NMNRNNNNNNNNNN

Where the variables in the ahove structure have these
meanings:

mount_time - The time at which the tape on this drive was
mounted.
dew_list - A pointer to a ring one area available for building

dcw lists.

process_id =~ The process id of the process which mounted the
tape.

error_count - The count of errors occuring on the associated tape
drive since the mount was accomnlished.

control_ptr - A pointer to the control sesment associated with
this tape drive.

file_no - The file number of the current file on the tape
mounted on the drive associated with the tape data
block.

volume - The volume identification of the volume currently

mounted on the tape drive associated with the tape
data block.

drive_no - The hardware address of the tape drive associated
with the tape data block,

MULTICS TECHNICAL BULLETINM MTB- 051

Page 16

~— density

reserved

track9

ringin

protected

Special Interfaces Part 3

The current density of a tape mounted on the
associated ‘drive. It is the same as the count in
the "last set density order code issued. See
appendix B.

A flag which is set to one if the associated tape
drive is reserved for allocation through the
priv_mount entry point,

A flag which is set to one for 9 track drives and
zero for 7 track drives.

A flag which is set if the tape has a ring.

A flag which is set if a set file bprotect order
code was issued for the tape.

o~

i

MTB-051 MULTICS TECHNICAL BULLETIN
APPENDIX A Page 17

ERROR RFCOVERY

An error in reading or writing a tape which exhausts the
error count will result in a tape_error_ condition being raised.
A DIMs condition handler may call and software_status to gain
information which will enable it to analyze the error and restart
the tape operation. For errors on read there will be only one
suspended buffer and that will be the buffer in error. For
errors on write the first suspended buffer will be the one in
error and subsequent suspended buffers will be succeeding write
behind buffers which existed at the time of the error.

A DIMs condition handler may reposition the tape as it
wishes and reissue read or write calls. If return is made from a
DIMs condition handler tapeio_ will carry on whatever operation
it was <called to perform before it raised the tape_error_
condition. Specifically, if a call to write was made, the buffer
tapeio_ was called to write (which was in a state of chaons during
error recovery) would be stacked at the end of the write behind
queue and if a call to read were made the next record from the
tape would be read. Thus, a read operation may be restarted by
calling order_code to backspace the tape and returning from the
condition handler. A write operation may be restarted by
backspacing one record, restacking all suspended buffers with
calls to write or order_code and returnine from the condition
handler.

EXAMPLE

Suppose a DIM is written which puts vrecords on tape
separated by file marks. After each record is written two file
marks are written and the second file mark is backspaced over if

the DIM decides to write another record.

Also suppose that at some point in time our hypothetical DIM
is running and has caused three buffers to be gueuved for write
behind, together with apprropriate order codes, and the DIM has
just gotten a fourth buffer to be filled and written. The
situation would be outlined as in diagram A.1.

MULTICS TECHNICAL BULLETIN
Page 18 APPENDIX A

Write Behind Queue

buffer 1

writg eof
write eof

backspa?e file

buffer 2

wrifg eof

writ% eof

backspa?e file

buffer 3

|
write eof
write eof

backspage file

get_buffer(cP,bP,code)
v

buffer 4

Diagram A.1

MTB-051
Busy
Busy
Busy
Allocated

MTB~ 051 MULTICS TECHMICAL BULLETIN
APPEMDIX A Page 19

Now suppose the DIM makes a call to write buffer &+ and the
tape_error_ condition s raised because of an error in writing
the second buffer to tape. “If the DIM makes a call to the
software_status entry point diagram A.?2 would outline the
situation at this point.

B-051

M

MULTICS TECHNICAL BULLETIN

Page 20

APPENDIX A

software_status{(cP,sP,code)

.

{ <
>)

)

suspended_ops

suspended_buffers(1)

//////

| suspended_buffers(3)

suspended_buffers(l4)

suspended_buffers(5)

suspended_buffers(6)

suspended_buffers(7)

suspended_buffers(8)

'//,/' m n
0 " I

null 0 l 0

1 "eof" l 1

null ol 0

1 "bsf" (///r’f

null ,//FT 0

1] vhsen |1

- P q

0 nn l 0

null 0 0

1 Ileofll [1

null 0 0

1 lleofll] 1

null 0 J 0

1 "bsf" 1 1

buffer 2

(suspended)

suspended_buffers 27////////%57

buffer 3

(suspended)

buffer 4

(chaos)

Diagram A.,?

MTB-051 MULTICS TECHNICAL BULLETIN
APPEMDIX A Page 21

If the DIMs error recovery consists of simply restacking all
operations which have been suspended (similar to tape_) and
returning from the on unit then the situation would be as
outlined in diagram A.3

iote that if the error is end of tape the error recovery
buffer could have been used to write trailer labels on the tape
in error and header labels on a new (continuation) tape before
restacking all suspended operations.

MULTICS TECHNICAL BULLETIN

Page 22

APPENDIX

Write Behind Queue

buffer 2

!

write eof
write eof

backspaJe file

l

buffer 3

l

write eof

write fof

backspacF file

buffer L

Diagram A.3

~ Busy

Busy

Busy

MTB-051

MTB-051 MULTICS TECHMICAL PRULLETIN
APPEMDIX B Page 23

ORDER CODES

OPERATION CODE MEAMIMG _OF count

Request Status ras Hone

Rewind rew Mone

Set Density sdn N=200 bpi, 1=556 hpi, 2=800 bpl,
3=1600 bpi (1)

Forward Space fsr Mumber of records to forward space.

Record

Backspace Record bsr Humber of records to back space.

Forward Space File fsf Humber of files to forward space.

Backspace File bsf Yumber of files to bhackspace.

Frase ers Number of erasures to be done

Write [Cof eof Number of file marks to be written

Set File Protect pro Mone

The following order codes will only be performed for callers
in ring one.

Reset Status rts one
Request Device rad None
Status

Reset LCevice Status rtd None
Set File Permit per Hone
Tape Load lod Mone
Rewind/Unload run Mone
Reserve Device rsv Hone
Release Device rel Hone

o plans are currently made to surport the following
instructions from the regular instruction set as order codes or
in any other way:

Servey Devices . .oad From Device

Read Control Registers Dlagnostic mode control
Yrite Control Registers Main Memcorvy overlay
Control Store Overlay Device Wraparound

drite Timing Character

''o plans are currently made to support the following
controller instructions as order codes or in any other wav:

Suspend Controller Read Lock BRyte
Release Controller Write Lock Byte

(1) 3 invalid for 7 track tapes. Ring one may change density on 7
track tapes at will and on 9 track tapes at load point. Higher

rings may change density similarly but only on unregistered or
unlabeled tapes.

MULTICS TECHNICAL BULLETIHN MTB- 051
Page 24 APPEMDIX B

Initiate Read Data Transfer Conditional Write Lock Byte
Initiate Write Data Transfer Write Controller Main Memory (BI!N)
Read Controller Main Memory Read Controller Main Memory (BIM)
(ASCILI)

Write Controller Main Memory

(ASCIT)

NOTE: The method defined of using character definitions of order
code operations leaves open the possibility of software defined
order codes. (E.G. "eot" for write end of tape - 2 tape marks
followed by a backspace file) MNone have been defined in this
document since it is not clear at the present time which, if any,
software defined order codes would be generally useful. Software
defined order codes may be the subject of a future MTB by this
author.

MTB- 051 MULTICS TECHNICAL BULLETIN
APPEMDIX C Page 25

P

Name: tseg

This data base Is used by the tape Device Control Module
(DCM) as its main argument. It resides in the user ring and its
pointer is passed to the hardcore tape DCM modules. The user
creates this data base as a single segment or area within a
segment. One tseg data base must be provided for each drive that
is attached.

Usarze

declare 1 tseg based (tsegp) aligned,

areap ptr,

ev_chan fixed bin(71),

write_sw fixed bin(1l),

sync fixed bin(l),

get_size fixed bin(l),
drive_number fixed bin(6),
buffer_offset fixed bin(12),
“buffer_count fixed bin(1l2),
completion_status fixed bin(2),
hardware_status bit(36) aligned,
error_buffer fixed bin(12),
command_count fixed bin(12),
command_queue (10) fixed bin(6),
bufferptr (12) fixed bin(18),
buffer_size (12) fixed bin(18),
mode (12) fixed bin(2),

buffer (12) bit (9792) aligned,
dsm_area area ((1));

NN D

1) areap is a pointer to the wuser structure in
dsm_area. (l!nput/Output)

2) ev_chan is the event channel name for signalling
by the DCM from ring 0. (lnput) '

3) write_sw is set to 1 if writing and to 0 if
: reading. (lnput)

4) sync is set to 1 if synchronous service from
the DCM 1is desired and to 0 otherwise.
(Input)

5) get_size is set to 1 if record sizes are to be
returned in the buffer_size array.
(Input)

~

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS TECHNICAL BULLETIN

Page

6)

7)

8)

9)

10)

11)

12)

13)

1)

15)

16)

17)
18)

(:) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved,

26

drive_number
buffer_offset
buffer_count

completion_status

hardware_statﬁs
error_buffer
éommand_couht
command_queue
bufferptr
buffer_size

mode

buffer

dsm_area

‘Is the number of commands

MTR-051
APPENDIX C

is the physical drive number assigned by
the DCM., (Output)

Is the offset from 1 of the first buffer
to be processed. (lnput)

number of buffers to be
(Input)

Is the
processed.

is a returned value which is 0 for no

pending |/0 or no status avilable, is 1

for normal termination of 1/0, and is 2

for nonzero major status from the
~previous 1/0 call. (Output)

is the 12 bit major and minor hardware

status. (Output)

Is the buffer number in which the 1/0

error occurred. (OQutput)

in the command

array to be executed. (Input)

is an array of commands for the tape
controller. (lInput)

is an array of relative pointers to the

data buffers. (lnput)

is an array of the 'sizes of the array of
buffers. (lnput/Output)

is an array of read/write modes for the

buffer array.

0 = binary;
1 = bcd;
2 = 9 track. (lnput)

is the array of buffers. (lnput/Output)

for user-defined 1/0

(Input/Output)

Is an area
structures.

(END)

