
MULTICS TECHNICAL BULLETIN MTB- 051

To: Distribution

Fr om: F • A • Can a l i

Date: March 12, 1974

Subject: New Tape DCM

ORGANIZATION OF THIS DOCUMENT

This document is divided into three parts. The first, an
introduction, discusses the or~~ni7.ation and purpose of this
document, motivation for the propos~ls made herein and the
logistics for implementation of the proposals. The second part
discusses the design of user interfaces and the third part
discusses special interfaces.

PURPOSE

The purpose of this document is to discuss motivation for
designing an interface between the A~Sl standard taoe DIM and the
current tape device control module (tdcm) which may eventually be
used as a replacement for the current tape device control
mo du 1 e.

MOTIVATION

The current tape device control module provides minimally
adequate functional capability for present anc foreseeable use of
tapes on the Multics system. llowever, desirability of a piece of
system software is not founded on functional capability alone,
but also on a number of other factors, collectively called
aesthetic appeal, a major part of which is the· ability to easily
support new applications of system software (inclurling
modifications to current applications.)

Three factors
applications.

affect the ability to support new

t·~ultics project internal \\larking documentntion. Not to be
reproduced or distributed outside the r~ultics project.

MULTICS TECHNICAL BULLETIN
Page 2 Introduction

i) Ease of use.

MTB- 051
Part 1

The interface between applications and the system
should be clean and simple. System software should provide
adequate services of a routine nature so that applications
of the system need only be concerned with their own
particular tasks and require a minumum of fussing with the
system interface. In no case should system software add
unnecessary 11 hai r" to an interface even in the name of
efficiency.

ii) Ease of understanding.

Application programs should be able to be written and
modified with a minimum investment of proF,rammer time in
studying or referencing system interfaces.

iii) Integration into the total system.

The use of a particular piece of system software should
feel natural to programmers using it who are familiar with
the overall system.

The current tape DCM communicates with users primarily
through the tseg data base. Perusal of the tseg data base
documentation, reproduced in appendix C of this document, should ~
convince anyone that its use is somewhat less than clean and
simple. A user of the current tape or.r1 has only one entry point
which he calls to perform reading, writing and tape positioning,
which of these functions to be performed being determined by tseg
stuffing. In addition to this unnecessary "hair" a user of the
current tape DCM must keep track of his own buffers within the
tseg data base, a routine and unnecessary task.

The new tape 001 proposed in this rlocuri1ent wi 11 adopt the
philosophy of supplying separate entry points for various tape
operations to be performed instead of tseg stuffing. There will
be a structure passed between user and DCM which will be much
smaller than the current tseg and will contain only data not
usually subject to change during the operation of a program using
a tape. Buffer allocation and optional error recovery will be
handled by the OCH, obviating the need for user programs to
perform this onerous task.

The new tape DCM will be designed to be fully integrated
with the tape registration and mounting package now being
written. Thus, the implementation of the DC~~ proposed in this
document will present users with a more unified and internally
consistent tape interface.

MTB-051
Part 1

LOGISTICS

MULTICS TECHNICAL BULLETIN
Introduction Page 3

It is believed that the interface herein presented can be
implemented in rings higher than the hardcore ring.

Let me make it perfectly clear that three phases of
installation are proposed and that while it is believed that the
interfaces presented in this document have been designed in
sufficient detail and generality to allow replacement of the
current tape DCM the author will only accept responsibility for
installation of the first phase.

Phase one.

The new DCM would be inst~lled with the ANSI standard
tape DIM. It would not replace the current tape DC~ but
would merely provide a simpler interface to it for the new
AtJS I standard tape DIM. The new DC~~ \'I/OU l d use the current
OCM to actually perform tape operations, the tseg data base
and buffers being hidden in the seRment used to communicate
with user programs.

Phase two.

The new DCM would replace the current DCM and would be
the sole interface between user prograMs and the tape
drives. Buffers would remain hidden in the segment used to
communicate with user programs. Data would still be moved
to/from wired dovm buffers for input and outnut and part of
the new tape DCtl may have to be in ring _zero th rough this
phase. A simulator of the current tape DCM~ which will run
in the user ring, may be written for unconverted user
programs.

Phase three.

An interface with the new GIM which is now under design
would be incorporated into the tape oct~.

MULTICS TECHNICAL BULLETltJ MTB-051
Part 2 Page 4 IJser Interface

BUFFERS

Input and output of physical records would be provided
through buffers. A call to read a record would result in the
address of a buffer of information being passed to the calling
user program (usually, and hereinafter refered to as, a DIM.)
Similarly, to write a physical record a DIM would make a call to
tapeio_ to al locate a buffer for use by the DIM for data
stuffing, followed by a call to tapeio_ to write the stuffed
buffer. The number of buffers available to a DIM may depend on
the maximur.i buffer size the DIM expects to use, a quantity the
DIM specifies during initialization of the tapeio_ package. A
maximum buffer size of 8192 characters is currently planned.

A special buffer, called the error recovery buffer, will
always be available to a DIP for use in recovering from
conditions·such as end of volurie. This bllffer 1·dll participate
in output only on a synchronous basis and no guarantee will be
made concerning the integrity of its contents after participating
in a write operation. The error recovery b11ffer \'.Ji 11 always be
8192 characters in length re~ardless of the maximum block size
specified by a DIM during initialization.

Buffers used by tapeio_ may be considered to be in one of
five states:

(1) Free - A buffer contains no useful data and is available
for allocation to a DIM when a write buffer is
requested, or is available for use as a read
buffer.

(2) Allocated - A buffer is in use by a DIM.
allocated as a write buffer
to a DIN when a rearl request
buffer contained the desired

It may have been
for the DlM or Riven
was issued and the
data from the tape.

(3) Busy - I\ buffer is participatin~ in an input or output
operation. Either it is on the write behind
queue and contains data to be written to tape or
it- is on the read ahead queue and data will be
read from tape into the buffer.

(4) Suspended - I\ buffer contains data but because of an error on
tape write behind or read ahead was terminated.
A suspended buffer will be allocated to a DIM
only if a buffer is needed and no free buffers
exist. If any suspended buffer is allocated all
other suspended buffers will have their status
switched to free.

MTB-051
Part 2

MULTICS TECHNICAL BULLETIN
User Interface Page 5

(5) Chaos A buffer is in a state of chaos if a write
request is made specifying the buffer and a tape
error is signaled. The buffer remains in a state
of chaos Hhile a DI~~ handles the condition
raised. If return is made from the condition the
buffer Is switched to the busy state by being put
onto the end of the wrl te behinr' queue. If no
return is made from the DIMs condition handler
(I.E. a DIM performs a non-local goto out of the
condition handler) the buffer will be assumed to
be free. See the discussion of error handling.

EtJIRY PO I NTS

This section describes a list of proposed entry points to
tapelo_ which vdll be available throu~h gates, with calling
sequences and a short description of what each does. It should
give the reader the general flavor of the prooosed DCM.
Arguments used are:

cP - Control pointer. A pointer to the control structure,
given to a DIM by the tape registration and mounting
package, used to identify a tape drive.

bP 8uffer pointer. A pointer to a buffer which is
available for writing or which contains data which has
been read from tape.

oP - A pointer to a structure used in describing orrler codes

code

count

to per form.

A return code given on each call to a tapelo_ entry
point which Is an error_table_ code.

- A count of characters in a buffer.
bln(17) number.

It Is a fixed

sP - A pointer to the software status block.

ring_# - A ring number. It Is a fixed bin(3) nuMber.

hs - A bit(72) hardware status.

The following are the proposed entry points availnble to a
DIM.

MULTICS TECHtJICAL Bl.ILLETltl
Page 6 User Interface

get_buffer(cr,bP,code)

MTB-051
Part 2

This entry will allocate a write buffer for a DIM and
return· a pointer to the buffer. If no free buffer exists
which can be allocated then:

(i) If read ahead buffers exist the most recently read
buffer in the read ahead queue will be returned and
the tape backspaced one record.

(ii) if write behind buffers exist tapeio_ will wait until
a write buffer becomes free and return that buffer.

(iii) If a suspended buffer exists all suspended huffers are
marked as free and one of these will be given to the
DIM.

(iv) All buffers iJre alreridy allocated to the DIM so the
code Is set to indicate an error anrl return is made to
the Dl~1 with the buffer pointer set to nul 1.

release_buffer(cP,b?,code)

This entry will change the state of the specified
buffer from allocated to free and the buffer pointer will be
reset to nul 1.

read(cP,br,count,code)

This entry will return a pointer to the next logical
record and set the count to the number of characters in the
record. If read ahead was not previously in effect it will
be initiated. If the previous call to tareio_ was an output
operation (write, write eof) no buffer will be returned and
a logic error will be signified in the return code but write
behind will continue.

write(cP,bP,count,code)

This entry will place the specified buffer on the write
behind queue and eventually \'.'rite the nuriber of characters
specified to tape. If read ahead was previously in progress
all read ahead buffers will be freed and the tape backspaced
the appropriate number of records before writing begins.

MI! LT I CS TE r. H t-1"1 r. AL 11 lJ L L FT I N MTB- 051
Part 2 IJser Interface Page 7

synchronize(cP,code)

This entry will synchronize tape operations before
returning. If read ahead is in effect all reac! buffers are
freed and the tape backspaced appropriately before
returning. If write behind is in effect return will not be
made until all writes are complete and all the write behind
buffers have been freed.

order_code(cP,oP,code)

This entry will perforM order codes on a tape in a
write behind fashion.

software_status(cP,sP,code)

This entry will return ~ pointer to a structure
describing the software status of tapeio_.

synchronous_read(cP,bP,count,code)

This entry point will be
point except that the read
synchronous manner.

synch ronous_v1r i te (cP, b P, count, code)

similar to
operation

the read entry
is performed in a

This entry point will be similar to the write entry
point except that the write is performed in a synchronous
manner.

synchronous_order_code(cP,oP,code)

This entry point will be similar to the orrler_code
entry point except that the order codes are performed in a
synchronous manner.

promoteCcP,ring_#,code)

This entry will set ring access to the tapeio_ data
base and associated tape drive. It will ignore attempts to
set ring access to rings lower than the callinp, ring.

open(cP,code)

This entry will be called by a DIM to cause tapeio_
initialize in preparation for using a tape.

close(cP,code)

This entry will be called by a DIM to perform cleanup
after having finished with a tape.

MULTI CS TECHNICAL BULLET I tl
Page 8 IJser Interface

restack~buffers(cP,code)

MTB- 051
Part 2

This entry will restack all suspended operations onto
the write behind queue. (See appendix A on error recovery.)

TAPE ERRORS

An error on a tape drive will be detected on the next call
to tapeio_ after the error occurs. Recovery and restart of the
operation from the point of error will be attempted as many times
as specified in-the error_retries field of the control structure
(see definition of control data structure below.) If the error
recurs on all retries a "tape_error_" condition vlill be raised
and a DIM may use the software_status entry point to gain
information concerning the hardwarP status and the status of
buffers which may have been queued on the device. See appendix A
for an example of a DIM error recovery procedure.

The tape_error_ condition will be raised during read ahead
when a call to the read entry point is made which would acces~
the read buffer in which the error occured. The tape_error_
condition is raised as soon as possible when it occurs during
write behind.

STRUCTURES

The following structures are proposed for communication
between a DIM and tapeio_ •

. CA) ORPER CODE LIST

dcl 1 order_codes basedCor),
2 number_of_codes fixed bin(35),
2 codes(O refer(number_of_codes)) unal,

3 operation char(3),
3 count fixed bin(8);

The meanings attached to the various elements of
this structure are:

number_of_codes - The number of order codes in the codes
array.

operation - A particular operation code to be
performed on the tape.

MTB-051
Part 2

count

MULTICS TECHNICAL BULLETIN
User Interface Pa~e q

- /\count associated with each order
code. It may be the number of times
the order code is to be performed or
an argument associated with a
particular order code as a modifier.

See appendix B for a list of the proposed order
codes and the significance of the count for each.

(B) SOFTWARE STATUS

dcl 1 software_status based(sP),
2 volume char(6),
2 file fixed bin(l7),
2 error_buffer ptr,
2 counts,

3 total fixed bln(l7),
3 free fixed bin(17),
3 allocated fixed bin(17),
3 busy fixed bin(17),
3 suspended fixed bin(17),

2~hardware_status bit(7~) aligned,
2 status_code fixed bin(35),
2 suspended_ops fixed bin(l7),
2 suspended_buffers(O refer(suspended_ops)),

3 buffer_ptr ptr,
3 count fixerl bin(l7),
3 error_count fixed bin(l7),
3 suspended_order_codes unaligned,

4 number_of_codes fixed hin(3~) initial (1),
4 operation char(3),
1~ count fixed bin(8);

The meanings attached to the various elements of
this structure are:

volume

f i le

error_buffer

total

free

- The volume identification of
the att?ched tape.

- The file number of the current
file on the tape.

- A pointer to the special 8192
byte error recovery buffer.

- The total number of buffers
which exist in all states.
(excluding the error recovery
buffer)

- The number of free buffers
available to a DIM.

MULTICS TECHNICAL BULLETIN
Page 10 User lnterfac~

MTB-051
Part 2

allocated

busy

suspended

hardware_status

status_code

suspended_ops

buffer_ptr

count

- The number of buffers which
have been allocated and are in
use by the DHI.

- The number of
participating in

buffers
input or

output operations.

- The number of. buffers which
have been sLlspended due to an
error on the tape.

- The hardware status for
error associated with
suspended· buffers.

the
the

- An error_tahle_
indicating the
hardware status.

type of code
nature of the

- The total number of operations
which have been suspended due
to a tape error. It includes
the number of read or write
operations with associated
suspended buffer plus the
number of order code operations
which have been suspended.

- A pointer
buffer.

to

- A count of the
characters of
suspended buffer.

a suspended

number
data in

of
the

error_count The offset in the suspended
buffer at v1hich the error
occured, if available, or zero.

suspended_order_codes - An order code which was
suspended, suitable to be given
directly to the order_code
entry point as an order code
structure. It contains only a
single order code which was
suspended.

(C) CONTROL DATA

dcl 1 tapeio based(cP),
2 user_area_ptr ptr,

MTB-051
Part 2

MULTICS TECHNICAL BULLFTIN
User Interface Page 11

2 user_area_length fixed bin(l7),
2 buffer_size fixed bin(l7),
2 error_retries fixed bin(l7),
2 modus_operandi,

3 mode fixed bin(l7),
3 synch_flag bit(l),
3 start_read_ahead bit(l);

The meanings attached to the various elements of
this ~tructure are:

user_area_ptr

user_area_length

buffer_size

error_retries

mode

synch_flag

start_read_ahead

- A pointer to a region within the
tapeio_ data base which is available
to a DIM.

The length of the region pointed to
by user_are~_pointer.

The maximum block size a DIM expects
to handle. The number of buffers
available to a rtM is computed from
this figure at the tine of the Dl~s
call to the open entry point.

- This nuMber specifies the number of
times taoeio_ will retry an
operation in error before g1v1ng up
and raisin~ the tape_error_
coridition.

- This specifies the mode of read or
write operations.
0 - binary
1 - 9 mode
2 - ascii/ebcrlic (1)
3 - bed
1~ - ebcd i c (1)
5 - ascii (1)

- This svti tch
operations are
synchronously.

specifies that
to be performed

If this switch is set rluring a DIMs
call to the attach entry point read
ahead is begun before returning.

,... (1) Translate feature must be installed at an installation in
order to use this mode.

MULTI CS TECHNICAL BULLET HI
Page 12 User Interface

NOTES

MTB- 051
Part 2

Theren\'lfi 11 be several v1ays of doing syn·chronous input and
output. The synchronous_read, synchronous_write and
synch ronous_order _code en tr·y points a re provided for convenience.
Another method of performing synchronous tape operations will be
to set the synch_flag before the call to the attach entry point
and leave it set thereafter. A D1M may perform synchronous
output simply by using the error recovery buffe·r for all calls to
the write entry point. This method, however, is discouraged
since it inhibits error recovery. Any DIM using this method will
do so at its own risk.

Calls to the write and release_buffer entries will cause the
buffer pointer passed to be reset to null unless the pointer
specifies the error recovery buffer.

The synch_flag will supercede
durin~ calls to attach. If both are
begin.

the start_read_ahead flag
set no read ahead will

An end of file condition on a read operation will cause an
error code to be passed back from a read or read_synchronous
call, rather than the tape_error_ condition being raised.

MTB-051
Part 3

MULTICS TECHNICAL BULLETIN
S pe ci a 1 I n t er faces Page 13

THE RING ONE INTERFACE

The ring one interface will exist primarily for use by the
tape registration and mounting package. It will deal with tape
drive allocation and drive dependent information which should not
be alterable in higher rings. Of course, ring one procedures
will have the interfaces defined in the previous section of this
document available, the interfaces defined in this section beine
in addition to those defined in part 2.

EXPANDED USER I tJTERFACE

An expanded list of order codes will be available for ring
one procedures calling the order_code entry point. Appendix B
indicates which particular order codes will be executable from
ring one only.

tlo checking will be done which prevents a ring one caller
from destroying the tape label.

,... ENTRY PO I NTS

The list of entry points defined in this section is proposed
as an interface to the ring one tape registration and mounting
package. Arguments used are as staterl in the corresponding
section of part 2 of this document with the followin~ additions:

dP - This signifies a pointer to a user defined area having
the same structure as the tape data block defined
below. The tape data block will contain information
relating to the status and characteristics of
individual devices.

drive_# - A fixed bin(G) number containing; the device address of
a tape drive

The ring one entry points are:

attach(cP,code)

This entry point will allocate a drive from the list of
drives available for user use. The control segment for the
drive is created and its pointer is returned to the caller.

MULTICS TECHNICAL BULLETIN
Page 14 Special Interfaces

detach(cP,code)

MTB- 051
Part 3

This entry point returns a drive to the 1 ist of unused
devices on the system. Cleanup is performed, the control
segment is deleted and the control pointer reset to null.

priv_attach(cP,code)

This entry point is similar to the mount entry point
except that reserved devices a re a 1 so ava i 1ab1 e for
allocation to the caller and no limit is enforced on the
number of ~drives which may be attached to a process.

add_drive(dP,code)

This entry point adds a drive to the list of devices
attached to the system. A tape data block will be created
and the information pointed to by dP will be used to define
device characteristics (e.g. 9 track, reserved.)

delete_drive(drive_#,code)

This entry point will delete a drive from the list of
devices available on the system.

tape_data_lookup(cP,dP,code)

This entry point will look ur the tape data block
associated with a tape drive and copy it into the area
pointed to by dP. If the control pointer is non null the
drive associated with the given control sefrnent will be
looked up. If the control pointer is null the drive number
in the structure pointed to hy dP will be used for the
lookup.

tape_data_change(dP,code)

This entry point will cause a tape data block overlay.
The tape data block having the same device address as in the
structure pointed to by dP will be overlayed with the
information pointed to by dP.

ki l l_io(cP,code)

This entry point stops all tape operations nS soon ns
possible and frees all buffers. The tnpe \·'llill be left in an
anomalous state. This entry should be called only in very
special cases (e.g. when a user hangs up) anrl with care.

MTB- 051
Part 3

, r.~IJLTICS TFCHNlf:AL Bl'LLETltl
Special Interfaces Page 15

TAPE DATA BLOCK

An additional structure defined for ring one interfaces is
the tape data block. It exists within a ring one se~mPnt and
there is one tape data block for each tape drive on the system.
The following format is proposed for the tape data block:

dcl 1 tape_data_block based(dP),
2 mount_time fixed bin(71),
2 dcw_list ptr,
2 process_id bit(3G),
2 error_count fixed bin(17),
2 control_ptr ptr,
2 file_no fixed bin(17),
2 volume char(fi),
2 drive_no fixed bin(6),
2 density fixed bin(8),
2 drive_flags,

3 reserved bit(l),
3 track9 bit(l),
3 ringin bit(l),
3 protected bit(l);

Where the variables in the ahove structure have these
meanings:

mount_time - The time at which the tape on this drive was
mounted.

dcw_l i st - A pointer to a rin~ one area available for building
dew lists.

process_id - The process id of the process which mounted the
tape.

error_count - The count of errors occuring on the associated tape
drive since the mount was accomplished.

control_ptr - A pointer to the control seFment associated with
this tape drive.

file_no

volume

drive_no

- The file number of the current file on the tape
mounted on the drive associated with the tape data
block.

- The volume identification of the volume currently
mounted on the tape drive associated with the tape
data block.

- The hardware address of the tape drive associated
with the tape data block.

MULTICS TECHNICAL BULLETIN tffB- 051
Part 3 Page 16 Spec i a 1 Interfaces

density

reserved

track9

ringin

protected

- The current density of a tape mounted on the
associated 'drive. It is the same as the count in
the · l~st set density order code issued. See
appendix B.

A flag which is set to one if the associated tape
drive is reserved for allocation through the
priv_mount entry point.

- A flag which is set to one for 9 trad(drives and
zero for 7 track drives.

A flag which is set ff the tape has a ring.

A flag which is set if a set file protect order
code was issued for the tape.

I

r
)

I
\
\

MTB-051 f1~ULTICS TECHNICAL Bl.ILLETIM
APPENDIX A Page 17

ERROR RECOVERY

An error in reading or writing a tape which exhausts the
error count will result in a tape_error_ condition being raised.
A DIMs condition handler may call and software_status to gain
information which will enable it to analy7-e the error and restart
the tape operation. For errors on read there will be only one
s us pended buff e r and th a t vJi 1 1 be the bu ff e r i n e r r o r • F o r
errors on write the first suspended buffer will be the one in
error and subsequent suspended buffers will be succeeding write
behind buffers which existed at the time of the error.

A DIMs condition handler may reposition the tape as it
wishes and reissue read or write calls. If return is made from a
DIMs condition handler tapeio_ will carry on whatever operation
it was called to perform before it raised the tape_error_
condition. Specifically, if a call to write was made, the buffer
tapeio_ was called to write (which was in ~ st~te of ch~os durin~
error recovery) would be stacked nt the end of the write behind
queue and if a call to read were made the next record from the
tape would be read. Thus, a read operation may be restarted by
calling order_code to back.space the tore and returning: from the
condition handler. A write oneration may be restarted hy
backspacing one record, restacking all sus11ended buffers with
calls to write or order_code and returnin~ from the condition
handler.

EXAMPLE

Suppose a DIM is written which puts records
separated by file marks. After each recorrl is written
marks are written and the second file mark is backspaced
the DIM decides to write another record.

on tape
two f i 1 e
over if

Also suppose that at some point in time our hypothetical DI~~
is running and has caused three buffers to be queued for write
behind, together with apprrorriate order codes, and the DI~ has
just gotten a fourth buffer to be filled and written. The
situation would be outlined as in diagram A.l.

MWLTICS TECHNICAL BULLETIN
Page 18 APPENDIX A

MTB-051

Wr1te Behind Queue

buffer 1
Busy

writl eof
I

write eof
I

backspa e file

buff er 2 Busy

writ eof
I

eof writj

backspa e file

buff er 3 Busy
~

write eof
I

write eof
I

.backspace file

get_buffer(cP,bP,code)

•
l~~~-b_u_f_f_e_r~4~~~-I Allocated

Diagram A.1

MTB- 051 t~ULTIC~ TE\.W11CAL BULLETltl
APPEMDIX A Page 19

Now suppose the DIM makes a ca 11 to write buffer ti and the
tape_error_ condition is raised because of an error in writing
the second buffer to tape. ''If the DIM makes a call to the
software_status entry point diagraM A.?. would outline the
situation at this point.

r-1
I.I'.
0

0:::
I-

z
1-
u.; _. _.
::>
ca
_.
<(
u
z
:::
u
L&J
I-

<(

x
c
-~
~

u.:
c..
c..
<(

(,,') 0
UN

t- QI
,..J bC
::> .rtl
::: a..

(

-.

,
software_status(cP,sP,code)

I
+ l -- -1
I

8 I suspended_ops

m n suspended_buffers(l)

0 "" 0

'"'''"''"--""~~ 0 0

"eof" 1

us-p;;;-~ffers(3) 0 0

null

1

nufl

1 "bsf"
. ..--
1

nul I ...-<'
----- 0

0 suspended_buffers(4)

"bsf" 1

p q suspended_buffers(5)

0 1111 0

nul 1 0 0 suspended_buffers(G)

1 "eof" 1

null 0 0 suspended_buffers(7)

1 "eof" 1 --
nul 1 0 0 suspended_buffers(8)

1 11bsf" 1

)

buffer 2

(suspended)

buffer 3

(suspended)

buffer 4

(chaos)

r

N

<
E
co
'­
~
ro ·-Cl

)·

MTB-051 ~-~ULTICS Ti;CHNICAL BULLETIN
APPENDIX A Pa~e 21

If the DIMs error recovery consists of simply restacking all
operations which have been suspended (si~ilar to tape_) and
returning from the on unit then the situ~tion would be as
outlined in diagram A.3

Note that if the error is end of tape the error recovery
buffer could have been used to write trailer labels on the tape
in error and header labels on a new (continu~tion) tape before
restacking all suspended operations.

MULTICS TECHNICAL BULLETIN MTB-051
Page 2 2 APPEf.JD IX A

Nrite Behind Queue

buff er 2 Busy

T
write eof

. I t •
write eo

backspade f i 1 e

l

buff er 3 Busy

1
write eof

I
\•Ir i te rof

.._
backspac1e f i 1 e

l buff er q I Busy

Diagram A.3

~

MTB- 051

OPERATlotJ ~

Request Status rqs
Rewind rew
Set Density sdn

Forward Space fsr
Record
Backspace Record bsr
Forward Space File fsf
Backspace File bsf
Erase er5
Write Eof eof
Set File Protect pro

The fo 11 owing order
in ring one.

Reset Status rts
Request Device rqd
Status
Reset Device Status rtd
Set File Permit per
Tape Load lod
Re\.,Ji nd/Un 1 oad run
Reserve Device rsv
Release Device rel

MULTI CS TECH~! I C/\L F?.ULLET IN
APPEMDIX B Pap;e 7.3

ORDER CODES

codes

MEAtl I NG OF r,ot !NT

tlone
None

0=200 bpi, 1=55~ bpi, 2=800 bpi,
3=1fir.O bpi (1)
NuMber of recorrls to forward space.

!lumber of records to bvck space.
t Jun be r of f i 1 e s to f o rw a r d s p 3 c e •
Number of files to backspace.
tJur:iber of erasures to be done
Number of file marks to be written
Mone

w i 11 only be performed for callers

t.!one
none

None
tJone
None
Mone
t~one

tlone

tlo plans are
instructions from
in any other way:

currently made to supoort the following
the regular instruction set as order codes or

Servey Devices
Read Control Registers
Write Control Registers
Control Store Overlay
Write Timing Character

l.o<:ld From Device
Diagnostic mode control
Main Memory overlay
Device Wraparound

tJo plans are currently fllade to support the following
controller instructions as order codes or in any other way:

Suspend Controller
Release Controller

(1) 3 invalid for 7
track tapes at will
rinf,s may change
unlabeled tapes.

Read Lock P.yte
\fr i te Loe k 11yte

track tapes. RinR one may change density on 7
and on 9 track tapes at load point. Higher
density similnrly but only on unregistered or

MULTICS'TECHHICAL BULLETIN t~TB- 051
Page 24 APPEMDIX B

Initiate Read Data Transfer
Initiate Write Data Transfer
Read Controller Main Memory
(ASCII)
Write Controller Main Memory
(ASCII)

Conditional Write Lock Byte
\·Jrite Controller Main Memory (Bir!)
Read Controller ~ain Memory (BIN)

NOTE: The method defined of using character definitions of order
code operations leaves open the possibility of software defined
order codes. (E.G. "eot" for write end of tape 2 tape marks
followed by a backspace file) None have been defined in this
document since it is not clear at the present time which, if any,
software defined order codes would be generally useful. Software
defined order codes may be the subject of a future MTB by this
author.

. .
MTB- 051 Mill.TICS TECHNICAL BULLETI~!

APPENDIX C Page 25

~: tseg

This data base ls used by the tape Device Control Module
(DCM) as its main argument. It resides ln the user ring and its
pointer is passed to the hardcore tape DCM modules. The user
creates this data base as a single segment or area within a
segment. One tseg data base must be provided for each drive that
is attached • .
Usage

declare 1 tseg based (tsegp) aligned,
2 areap ptr,

1) areap

2) ev_chan

3) wri te_sw

4) sync

5) get_size

2 ev_chan fixed bin(71),
2· wrlte_sw fixed bin(l),
2 sync fixed bln(l),
2 get_size fixed bin(l),
2 drive_number fixed bin(6),
2 buffer_offset fixed bin(12J,
2· buffer_count fixed bin(12),
2 completion_status fixed bin(2),
2 hardware_status bit(36) aligned,
2 error_buffer fixed bin(12),
2 command_count fixed bin(12),
2 command_queue (10) fixed bin(6),
2 bufferptr (12) fixed bin(l8),
2 buffer_size (12) fixed bin(18),
2 mode (12) fixed bin(2),
2 buffer (12) bit (9792) aligned,
2 dsm_area area ((l));

is a pointer to the user structure in
dsm_area. (Input/Output)

is the event channel name for signalling
by the DCM from ring 0. (Input)

is set to 1 if writing and to 0 if
reading. (Input)

is set to 1 if synchronous service from
the DCM is desired and to 0 otherwise.
(Input)

is set to 1 if record sizes are to be
retur~ed in the buffer_size array.
(Input)

© Copyright, 1972, Massachusetts Institute of Technology
A 11 rights reserved.

MULTICS TECHNICAL BULLETIN ~.~TB-051
Page 26 APPENDIX C

6) drive_number

7) buffer_offset

8) buffer_count

9) completion_status

10) hardware_status

11) err.or _buffer

12) command_count

13) command_queue

14) bufferptr

15) buffer_slze

16) mode

17) buffer

18) dsm_area

is the physical drive number assigned by
the DCM. (Output)

is the offset from 1 of the first buffer
to be processed. (Input)

ts the number of
processed. (Input)

buffers to be

is a returned value which is 0 for no
pending 1/0 or no status avilable,, is 1
for normal termination of 1/0, and is 2
for nonzero major status from the
previous 1/0 call. (Output)

is the 12 bit major and minor hardware
status. (Output)

is the buffer number in which the 1/0
error occurred. (Output)

·is the number of commands in the command
array to be executed. (Input)

is an array of commands for the tape
controller. (Input)

ls an array of relative pointers to the
data buffers. -(Input)

is an array of the ~izes of the array of
buff e rs . (. I n p u t I 0 u t p u t)

is an array of read/write modes for the
buffer array.

0 = binary;
1 = bed;
2 = 9 track. (Input)

is the array of buffers. (Input/Output)

Is an area for user-defined I /0
structures. (Input/Output)

(§) Copyright, 1972, Massachusetts Institute of Technology
·Al 1 rights reserveda (ENO)

. t

