
MCLTICS TECHNIC~L BULLETIN

Tot Distribution

From~ Robert s. Coren and Michael J. Grady

Subject: SOFTWARl FO~ INTE~-SYSTEM FILE TRANSF:R

D~te: ~ 03/01/74

MTB-046
03/01/74

This document describes a design for soft~are to enable files to
b@ transmitted between the MIT an1 Phoenix Multics systems, using
the new !/O Daemon mechanism. Comments should be addres~ed t~
~obert s. Coren at CISL, or by rnai I to Coren.Mui tics.

Thls document is divided Into the foJlowlng sections:

I.
II.
III.
IV.
v.
VI.
VII.

OVE.RV IE ~I
COMMAND INT£RFACE
NORMAL OPERATION OF FIL~ TRANSF~R DRIVER
FILE TRA~SF:R DIM -- METHOD OF DATA T~ANSFER
INITIALIZATION ANO TE~MINATION OF DRIVER PRO~ESS
BRI'::F S!JMMA,~Y OF PROGRAMMING REQ~J!R.EM[NTS

SUMMARY OF OAT4 ~ESSAGES ANO ORJER CALLS

I. OVERVIEW

To facilitat~ the speedy transfer of segments between two
Multics sYst~ms, we oropose to make use of the new IIO d~emon
mechanism to implement a ••transfer_flle" {tf) command that queues
requests to have fl le~ transmitted atong a synchronous teleohone
I lne. It is not expected that th ls facility will be the primary
method for the transfer of files from one system to the other,
hut rather that it will be available for the transferral of flies
which are needed more quickly than is possible through the normal
u se of th e car r y - ta p e f a c i l i t y ..

In the initial lrnplementatlon (at least), only segments wUI be
transferrabie by this facility (not directories and not
multi-segment flies>. ACls and additional names will not be
transferred~ T~e capability to transfer multi-segment flies may
be added later, but its use is not recommended because of the
large amount of time required for the transmission of lar9e
flies.

Multics Project internal working documentation. Not to be
reoroduced or distribuTed out~lde the Multics Pro]ect.

1

MTB - Cl.to 0 3/01/7~

II. COMMAND INTERFACE

The .. transfer_flfe .. command wiJI hav·e t·he effe.ct of a
"dprint .. command with a special ·"-d,evice_c lass.. argument; that
is, it wi 11 olace a request in a d.aemon queue that wil I be
proce:;sed by a oartlcul_ar ty_pe of I/o- da.emon driver ..• The co.mm-a_nd
usage wili be something like the following:

·tra_ns fer_ f ii e -•contro_l~a-rg1- path1 -co·ntro I _argz- --pathZ- •••

p.ath.i.

con tro I _a-rg_l

are th-e p.athnam.es
transferred.

may be either of the following:

to be

-not_ascll, The se9ment may contaln non-a~cii data,
-na e.g. it might be an obje-ct segment. If th.ls

--Queue n,
-q Q

control argument is ~upptied, the data will
oe transmitted in fr-blt .. bytes" <see
discussion of data transfer ln .sect Ion IV>;
otherwise it will be transmitted as 4 asc11
characters per word. This .control argument
snould rial be used for ascli data~ since it
decr~ases transmission speed significantly;
however, if trds control argument ls omitted,
non-ascl i characters ~ l 11 not b-e ·t·ransmi tted.

The request is to be_ placed in priority
queue Dt where 1~n~3. The default is 3.

The transfer_f lie command wll i probably handle its control
drguments in a manner siffiilar to dprint, i.e~ control ~rguments
wii I apply to subs~quantiY-named segments.

III. NORMAL OPERATION OF FILE TRANSFER DRIVER

A special kind of IIO daemon ••device driver•• process wi.I!
run on each system; the two process~s w ll I be essentially
1aenticat; and each will be capable of e.lther sending. or
receiving segments. If the queues at one end have req.ue.sts in
them and the aueues at the other end are empty, the process with
the ful I queues sends and the other on~ receives. If the queues
at b6th ends are non-empty, the two processes take turns sending
(the mechanism for this is explained f~rther on>. To determine
which one sends first lnitlaliy, one of them CthrQugh selection
of the appropriate process-overseer entry poclnt) is designated as
the "master.. process and the other as the "s I ave" process; if
both driver processes come up with non-empty Queues, the "master"
process gets to send flrst.

2

MTB - Gt.+6

If the Queues at hD1.b. ends are empty,
turns checking their queues; the one that
gets to send first.

u3101111+

the orocess~s take
first f lnds a reouest

A file trdnsfer driver during normal operation can be
thought of as at ternating between two modes, ''send" and
"receive". A brief descriptlo~ of the Proposed operation of these
two modes follows.

The driver enters "send" mode when it receives the standard
••reQuest ready .. wakeup from the I/O Coordinator (see MTB-004 for
details). <As far as the coordinator ls concerned, a flle
transfer driver is Just another output driver.> Uoon receipt of
thls wakeup, the driver prepares a "header" for the segment to be
transferred; this header contains the name of the segment, its
fength in characters, the person-project-id of the reouestor, and
an indication of whether or not the seqment is atJ ascii. An
order call causes this header to De transmitted to the receiving
process.

The actual segment, folJowed by an "end-of-segment" message,
is transmltt.:d by the File Transfer DIM in response to a '"write ..
call; the sendln~ process then performs whatever accountinq ls
desired, and sends its coordinator a wakeup informlng it that the
reQuest has been compieted. The bit used by the driver to tell
the coordinator whether it is ready to perform another outout
r-eouest ls set to ••c"b before this wakeup, because the driver
will now s .. itch to "receive" mode.

To enter "receive•• mode, the driver issues an order cal I
which enables it to receive a segment header from a sending
process at the other end of the line. <If instead of a header lt
receives a special message lndicatlng .. no request to send'", it
sets its .. ready for reauest" bit on and enters "send" mode if its
coordinator orovides it with ~ reauest.> It then receives the
actua I data by means of a "read .. ca 11.

The segment thus transmitted ls placed in a ~ubdirectory in
a deslgnated "file transfer'' directory (which will inltia.Jly be
>Udd>Multics>Tran3fer) • fach user of the file transfer facility
ls given a private subdirectory in which his/her segments are
placed; this avoids conflicts lf two users happen to transmit
segments wltn the same entry name. Once the segment has actually
been transferred, the requestor receives mail on the receiving
system informing him of the fact.

3

MTB - 0~6 03/01/7~

Suppose, for example~ t·hat Smith.Multics, logged in on the
HIT system, issued the following command:

transfer_t.i.le >udd>Multlcs>Smlth>foo.pJ1

The data w.ould be put Ln a segment on the PCO system with the
pathname

>udd>Multlcs>Tr~nsfer>Smith>foo.oll

and Smlth.Multlcs on
foJiowlng mall:

the Phoenix system wou1d receive the

From Transfer.Multics:
foo.pl1 has arrived .in >udd>Multics>Transfer>Smith

Smith.Multics would have .. sm" access to his subdirectory in the
flla transfer directory, so he coutd copy the segment into his
own hierarchy and delete lt from the file transfer subdirectory.
He would not, nowever, have '"a" access to th.ls dl.rectory;
therefore, he cannot plant links to other parts of the hlerarchy
in the file transfer subdirectory.

While a segment ls being received, the fll.e transfer driver
set::> access on it to .. null 0 tor all othel"' .users; this prevents
the re~uestor (or anyone e I se> from accidental t y p,lck.lng up the
segment in ar. inconsistent state.

Note that lf Smith.Multics transfers foo.pl1 twlce, or
tran5f~rs two different segments with the same entry name, the
earlier one wil I be overwritten oy the iater one at the receiving
end.

Once it nas received a complete segment, the flle transfer
driver wakes up lts coordlna·tor to advise it that it ls ready to
s~md another segment; if the coordinator provides it with one, it
enters "send" mode and proceeds as described above; other~ise it
sends the spec la I "nothing to ;;end" message mentioned ear Iler,
and remains in .. receive" mode.

The alternation mechanism described here leaves us ~1th the
prpolem of what hapoens when the request 6u~ues at both ends are
empty, and in particular no~ transmission can be recommenced once
a request appears in one queue or the other. The solutio~

requires that the t1140 drivers take turns checking th·eir queues,
so as to avoid having both of them in ••sen·d.. mode at the .s·ame
time; hawever, we wlsh to avo1d Th~ excesslve was·te of resources
that w·q._u.ld result if these checks w·ere made as of ten as P·osslb.le •

S-upp.ose that MIT has Just com.plet-ed se·n.ding
PCO, an'd, that the queues at bo·t·n e·nds are
foJ l:o:w·fn.g steps"riould be taken:

4

. a request to
now empty. the

MTB - 046 IJ3/Qi/7&+

1) The PCO dr1ver interrogates its queues (through the
coordinator>, f lnds them empty, and sends the '"no tiling to
send'' message described above. It then prepares to receive a
request header in response•

2) The MIT driver, on receiving the "nothing to send'' message,
interrogates l.is queues; since they are empty, it sends back
a "nothing to send" message.

3) The PCO driver now notices that nothing has been transmitted
either way since it last checked its queues; therefore lt
goes to steep for a short interval (say 30 seconds} before
checkln9 i to:; queues aqaln. If they are sti 11 empty, 1 t then
sends another "nothing to send" message.

4) After recelvin9 this message, the MIT driver 1 lkewise goes
to sleep orief ly before checking its queues again; ~ssumlnq

they are sti 11 empty, l.t rep I ies with yet another .. nothing
t o s end" m es s a g e •

Steps 3) and 4) are reoeated untl I one of
something to send (or terminates the session,
wi If then enter "send" mode and transmission
before. The receiving driver wil I turn off the
to JO to sleep before the next time lt checks

The salient feature of this mechanism ls
ever checks its queues unless the other ls
thus a dr lver that finds a segment ready for
immediately begin sending it without fear of a

the driver~

see Section v>.
has
It
as wl I l proceed

flag that tel Is lt
its queues.

that neither driver
in '"receive .. mode;

transmission can
conf I let.

The normal operation of a fl le transfer driver never requires
operator input~ and the driver ~ii I not check for input throuqh
the .. read status .. order call after each request, as a requJar
deviC:e driver does. It will accept input after a QUIT, after
which al I commands acceptable by a device driver ("start",
"kill", "restart'", ''lo•Jout .. , etc.) can be entered. but the
utility of actually s~nding ci file transfer driver a QUIT and '3

command seerrs rather limited. The primary form of outs.i.de
.. control" over the file tran:.>fer driver process wi 1 l be the
11 swltch_driver" command described in Section V ot this document.

5

MTB - C-+b 03/0t/7i+

IV. FILE TR~NSFf~ DIM -- METHOD OF DATA TRANSFEq

Th ls sect lon wl 11 be devoted to the d-iscussion of the file
transfer DIMtftd_) and th~ messages .it wil I t-ransmi.t and. r-eceive.

The deslgn of the messages to oe used in the fl i e transfer
process was slmplifled as much as possible in order to a.void
further changes To t·he ring O tty_dlm and the. 3:JS s.oftwar-e. Thus
a good part of this design wa5 taken from the m.a.ssage. format us.ed
by the GRTS Remote Computer Interface, which w.as dlsc.ussed in
KSB-110. The GRTS design allows the Transmission Qf ASCII data
over synchronou.s communl.cat Lons channne I S.t ~i th terml.na ti·on on

·ETX followed by a block check character. Hopef~Jly, with th.ii
design, no changes wl l I be reQulred to either the ring 0 tty_dlm
or the 355 software. ·

The message format Itself consists of a header, containing
control information, foJlowed bY up to SQQ_ character·s of text,
t.:rmlnated bY an ETX character and a olock check. character• These
mes~ages wi I l be tran5ml tted over a synchronous 1 lne, 7' bl ts per
character with odd parity generated and checke~ by the 355. This
parlty check plu.s the addl.tionat check by the block check
character wll I al low detection of al I 3(or less) blt errors and
most other multlple blt errors. Error correction wltt not be
possible wlth thls scheme since the 355 o.n.l.y notifies. u,s. of the
parity error, but not which character •. However, d.etectlon Ls the
most important f e·a ture s l nc e the mess.age pr·otoc.o.I a I I ows
retransmission of messages received in error throush the use of
ACK/NAK responses. The projected error rate of the c.ommunlcatlons
channeJ ls 1 in 10,aoo blts and with approximately 500 character
messages, we have an error rate of about 1 in 15 message.s. This
appears acceptable and we should be able to reco.ver with one
retransmlsslon.

Messages transmitted wil I have the f3tlowlng format:

Where:

syn

soh

fc

SC.

syn syn syn syn soh fc sc ac stx -text chars(~-500>- etx bee

is o synchronlzatlon cha:racter used to al I 01111

the rec e i v l n·g 3 5 5 to be g l n . a cc e P t i n g
ct-iar ac ter s.

is a start of header char.a:c ter < G 01) •

is a format cod.a character used t6 indicate
th·e type of messa9e, ~xplalneo b-elow.

is a .seque·nce code, either 101 or 102t and ls

MTB - 01+6

oc

stx

text chars

etx

bee

IJ3/lJ1/71+

used to prevent reprocesslny o~ retran5mltted
data.

ls an operation code
acknowledgement field and
explained below.

ls a start of text char(002>.

cont a i n!ng an
a command field,

are ASCII text characters which may be
present ln a message. The various types of
text are exp!alned be•ow.

ls an end of text character<003>·

ls the block check character, used to check
the message for errors, also explained below.

The format code is used to describe the varlous types of
messages which can be transmitted. ~ format code of 101 indicates
a service message. Service messages contain no text characters
and are used primarily to send commands to the other system. A
format code of 104 indicates a segment header message, and the
text contains a packed header for use by the driver process. The
third format coae, 110, ls the text message code and ls used when
S\i!ndlng the actual segment.

The operation code contains two fields, the acknowledgement
and the command. The acknowledgement field ls used to indlc~te
whether or not the last message was received correctly. A
non-zero acknowledgement means an error, and that the message
should be retransmitted. The command field ls used to request
special actions or to indicate a particular state of operation.
Tne format of the ooeratlon code ls as follows:

litl.Q .me..a.o.ln.9

unused(! bit) alw3YS on to make the code ASCII.

ack<3 bitsJ the acknowledgement field.

cmd(3 bits) the command field.

7
·.

MTB - L0:.6 OJ/01/7!+

The no-operation command(nop) is used when no special action
is required other than the proce s;; lng of any data 1111h ich may oe
ore sent l n th~ me-:; sage. Commands dre def 1 ned on a per format code
basis, i.e. each format coae has an assoclated set of command
codes. These are as fol lows:

for service messages~fc = 101) :

nop
ready_to_attach
attach_accepted
end_of_seg
queues_empty
end_of_se:>sion

··oaO"'b
"001 .. b
"C lJ "b
.. 100 .. b
.. 101 .. b
'"110'"b

for header messages(fc = 1~~):

for text messages(fc

nop
asc.i i_data
pack ed_da ta

= 110) :

."000 .. b
"'001 .. b
.. 01.0 ... b

The service messages are used to indicate the s-ta.te o.f the
driver process and are normally sent as a r~s~lt o{ an order
ca J I • The commands for text messages are U·Sed· to .in di.cat e the
type of text in the message.

The message text C()nsists of the actual data to be
transmitted, which may be in two forms.

1) The data may be all lega1 ASCII character·s, which
wi 11 ·be transm-itted as is. Data compre-ss1on wl t I be
used where possible and the data witJ be checked for

• two specl ::ii characters, USCG37) and ETX (003), which are
used by the system to indicate compres.s . .ion and
termination, respectively. If either of' the characters
are found in the text to be transml tted they will be
ignored. Th~ compr'essi on code wi 11 be used whe·n 3 or
more of the same charac:;·te·rs ~re to be transmi tte0ci. · W·hen
this O·CC u.rs the f.0.1 tow lng. f orma·t 1d 1,1 b-e u·s.ed1

US char co·un t

where US(Q37) indicate.s co·mpresslon, char 1.s tne
chc.ra·c·ter belng compressed·, and count ls t'h-e binary
count in the range Cl to E>3 (0 to 77 octal» with the
high order o.it, bit 7, always on Cto. make th·e .character
transmittable ASCII>.

8

MT9 - 04& 0 3/ (! 1171.+

2) The data may be also be any 3 bit byte, whlcn could
not be transmitted as ASCII. In this case the data wlJI
be packed so that it may ~e transmitted by taking 6 bit
bytes from the source and transmitting them as 7 blt
characters with the 7th bit always on to allow correct
transmission of soeciaJ characters. The comoression
technique explained earlier will be appJied to these
packed characters also.

Thus any segment can be transmitted using this scheme, with
decreased throughout for non-ASCII data.

The block check character is an additional check made on
received data to Insure proper transmission. It ls the exclusive
or of all the characters in the message after the SOH character,
and will be generated and checked by the DIM.

O.ltt .Qesign

The DIM will consist of one I/O system interface module and
four main device controJ modules, similar ln design to the
9115_dcm_. The interface module wlll make Cdlls on the device
control modules and wi II be responsible for going blocked waltlng
for events to occur. The four main device control modu!es are:
the attach/detach module, which wl II also handle the order calls;
the read and write modules to do the actual device 110: and an
event-call-driven module to handle wakeups from thP. ring 0
tty_dim. This module will be responsible for acknowledging
messages and sending wakeups to the I/ci system interface module.

Attaching

The DIM wil1 always be attached in read and wrlte mode, and
two other modes will als;o be oermitted. The first ls "notify"
mode which tel Is the DIM to abort the attach after five minutes
if unsuccessful. The other mode is either "master .. or "c;Jave"
which indicates whlch process is to control the attach se~uence
of messages.

After lnitla lization the attach module wl II send a
.. ready_ to_ at ta ch" message. Th ls w 11 I be repeated every 30
seconds if the mode is "master .. , and every :+5 seconds if the mode
ls '"s I ave'". Note that if both oroce sse s transml t at the same
time, both messages wi 11 be lost and thus the time difference ls
required to al low the eventual correct transmission by one or the
other. Several different responses can be expected depending on
the line connection and the mode of the transmitting process
<1.~., the flrst process to successfully transmit a
"ready_to_attach" message whlch is received without error>. If
the line is incorrectly set the process may receive an MuS2400
type NAK message. If this occurs the attach wl 11 be aborted with

g

MTB - 046 03/G1/7L;

an appropriate error code. If tne transmitting process i.s the
•• s I ave.. then the .. master'" wi l J s.e nd another '"reaa.y _ to"""'a.t tach"
message, the "slave'" wi 11 then send the ..,attach_ac:cept.ed"
message and await the same from the "master". Otherwise if the
transmitting process is the "master••, the .. stave'' will s .. end the
'"attach_acceoted'" me5sage and the "master" wi.IJ res.p.ond wlth the
same. Thus the ''slave" ls a·Jways the first to send the
"at t ach_accepted'" messa.ge.

Sending

The technique of wrltlng a segment to the oth~r proc~ss. wljJ
consist of an order cal I to send a header message, follol'led by a
write call to write the entire contents of the. segment~.

The order call that writes the header will block until the
rece.iving process sends the acknowledgement, indlcatlng that the
data may be transmitted.

The write caJl wl 11 break the data d.own lnt·o i.+00•500
character messages, convert as. .;xplained above and transmit, one
message at a time, awaiting the acknowt~dgement before sending
t11e next mess.age. At tne completion o,f transmlssl.on the
"end_of _segment .. serv.lce message w i 11 ·be sent.

If an error occurs during transmission of a. me-ss.age the
response wil I be a NAK, and we w.i.11 retransmit· the last m·essage.

If the acknowledgement message was received In error, we
will retransmit the last message, this time 111lth a NAK. This
alJows the other process to transmit its ackno.w•edgement message
again.

Receiving
·.· .. ·.·.-..

H.hen p.reparin:J to receive a seg-men.·t the fol low1n·1 cal l's
wiTI. ··be made: an order call. to receive tne header, followed by a
read call to read in the segment ~nd place it in the file system.

The order call to receive the header wiJI block and wait for
one of the fol• ow.ing messages: a header message, a Qu.e·ues.._empty
message, or an end of sess.ion message. When the message ·is
received an acknowled-gement is sent and the .message. type ~s.
returned to th·e ca I I er.

If a segment ls being sent a read call is made to the DIM
and the me·ssages are un·packed and pL3ced .in the $Pe-cifled
segment. If no errors are found then an ACK ls sent, and the DIM
bloc.ks affd waits for the next mes.sage. Otherw-ise a N.~K is se·nt
and the DHt Wqits for th.e·retra,nsm.!tted.mes'i.age.

U·pon receipt on the "en d_o f _seg .. messa9e the DIM re torns the

1.0
· .. ····

•
MTB - 046 03/l'l1174

number of elements read.

Detaching

No messages are sent as a result of the detach caJ I, and the
device ls detached.

v. INITI~LIZATION AND TERMINATION OF DRIVER PROCESS

Certain problem5 are posed by1the actual physical setuo at
CISL. In particular, we have only one hlgh-speed f lne to
Phoenix, and we want to be able to use lt either for the ·transfer
of flies between the two systems or for running CISL•s ~OS2400 as
a remote printer through the PCO I/O daemon. A manual switch
installed at CISL wl 11 determine whether the CISL end of the llne
is connected to the MOS2400•s modem or to one ln the IPC machine
room; the other end wll I be connected to the Phoenix 6180.

This situation requires software that can detect the status
of the switch and act accordingly. We atso wish to be able to go
back and forth between running the MOS2400 and the flJe transfer
daemon as nearly automatlcaJfy as possible. The proposed design
wil I accomplish the transition as the result of a single command
followed by manual resetting of the switch.

We envision a process on the PCO system which, by means of a
special process overseer, wll 1 be prepared to run alternately as
a remote printer (i.e. MOS240D> driver or as a file transfer
driver. When this process logs in lnltlally, it attemots to come
up in normal fashion as a driver for the MQS2~oo, which it tries
to attach; a '"notify'" mode ls used in this attach call to
indicate that if no recognizable response ls rece)ved within a
reasonable time (say 5 minutes), the DIM is to return with a
non-zero status code. Thus, If the Jlne ls not connected to the
MDS24QU, or the MDS2400 ls not powered on, the attachment will
fall. The driver will then decide that lt ls to run .as a file
transfer driver, and w111 try to attach the llne through the fiJ~
transfer DIM, aga.ln using "notify" mode; if there ls no
resoonse, the driver wil I again attempt to attach the MOS24QO.

Unless the switch ls set In an invalid position, ~r

something is otherwise wrong at the CISL end, the Phoenix arlver
wlt I eventually succeed in attaching something. Then, and only
then, lt will lnfor;n the coordinator of its existence and type;
that Is, the coordinator wlll regard the file transfer driver and
the MDS2400 driver as separate p~ocesses, which Just happen never
to be running simuttaneousJy.

Once the driver is running something, swltchlnq between states
wiJ f be controJ led from CISL, but the control wil I be exercised
through the PCO driver process; this process wi 11 therefore be

11

MTB - Q4b

the ••master.. process for the
transmit first. The m~chanlsm for
later ln thls section.

03/01/74

purpose of decldlng who gets to
s~ltchlng wl I I be dlscussed

Meanwhile, the file transfer driver 3t MIT (.whlch couid oe
logged in when the system came up) attempts in simlJar fashion to
attc~ch the line to PCO (wl thout uslng .. notl ty" mode); when
appropriate messages have passed between the t~o systems, both
drivers con~der the line attached.

After the attachment ls com pl et ea, the "master'" drl¥er asks
lts coordinator for a request. If tnere is a segment to send, it
immediately enters 0 send .. mode and proceeas as described in
Section III; otherwise it sends a .. nothing-to-send" message and
enters "receive .. mode .. The "slave" driver, ·meanwh-iJe, enters
.. receive" mode immeJlately on completion of the attachment. If
both sets of queues are empty, the two drivers take turns
checking their Queues as described in Section III1

The switching mechanism for the line will work as described
below.

A new command, "switch", will be added to the·r·emote driver
command repertoire; lt will instru~t the driver ~o cease running
the MOS2400 and become a fil.e transfer d'river. In particular,
when a $SWITCH control card ls placed in the MDS240o•s card
reader, the driver will complete its cJrrent request as usual,
and then detach the . MOS240 C and send a "I ogout•• wakeup to the
coordinator. In other words, from the coordinator•s point of
vleiN, the MOS2o.+JO driver wi I l log out; in actual fact it wil I
become a f 11 e · transfer drl ver and attempt to reattacr t·ha line
for file transfer. If this attachment succeeds, the f.i I e transfer
driver wllJ m~ke itself known·to the coordinator, and processing
wiJ I begin as aescr ioea above.

In order for the attachment to succeed, of co-urse, the
manual switch has to o-e in the MIT~to-PCO position: it wi 11 be
the respons.Lb.illty of the operator w'ho inputs th-e 0 swltch"
command to· reset the swJ t:ch.

A "'swi tch_driver .. com·mand wl II be pr·ovlded t·na·t sends a
wakeup to tne file transfer driver instl"'µctlnq it to cease f.ile
transmission and start running the. MOS2400• T~us when the file
transfer driver comes up, it creates an ~vent Chdnnel whose nam~
it places ln ~ predetermined- data base; in order t~ swltch 9 some
other process logged in to PCO .issues ·th-e •·•s1'ltch_drlver""

12

MTB - 046 03/01/74

command, thereby sending a wakeup over this channeJ. <Access to
the "swltch_drlver•• commana may be restricted in order to avoid
accidents.) The file transfer driver wlfJ block on this event
channel at the same time that it blocks for requests from the
coordinator; thus lt wll J be impossible to switch while a file ls
in the middle of being transmitted.

When it does receive the wakeup, the driver wi I J send an
.. end-of-session'' message to the file transfer driver at MIT and
send an answering wakeup to the process that issued the
"swltch_driver .. command, which wl 11 type a I lne advising that the
manual switch should be reset. The driver then attaches the
MDS2400 and comes up again as a remote printer driver.

Because there ls only one 48QQ-baud modem on Service at MIT,
we cannot run the MDS2400 from MIT at the same time as the fil~
transfer facility. In fact, once the file transfer facility ls
functional, we wil I probably only want to run the MOS2400 from
MIT when PCO ls down. Therefore the MDS2400 driver at MIT might
Just as well be logged in manually on the rare occasions wh@n lt
ls needed, rather than sharing a orocess with the file transfer
driver. (1)

When the MIT file transfer driver receives an
'"end-of-session" mesage from PCO, lt detaches the line and, after
waiting a reasonable time <so the switch can be reset), lssues
another- attach call, without the "notify'' mode described above.
It will then slmpl~ wait blocked until the PCO driver comes up
again for fl le transfer <in response to a .. switch" command to the
MDS240C driver in Phoenix).

VI. B~IEF SUMMARY OF PROGRAMMING REQUIREMENTS

The remote-device driver software wil I have
.. switch" command; some mechanism {a separate entry
be reQuired to inform a remote-device driver that
of becoming a file transfer driver.

to acceot the
point?> will
it is capable

Some new parameters will have to be invented for
io_daemon_parms ln order to identify file transfer drivers; it
may simply b~ sufficient to define the additional device class,

(1) ~f we get a second modem at MIT, we
driver wlth .. notify .. mode and use lt to
dur~ng file transfer.

13

could run the MOS2400
run the MOS2400 from MIT

MTB - Gi.i-6 03/ 0117 4

since the coordinator d6esn•t care wnat device ls being run by
the driver, and the driver wlll use UTtle if any of th~

presentlY-exlstlng device-type-dependent driver code.

1> Procedures to ru.n tne file transfer driver, some of which may
be cribbed from exis~lng driver code.

2) A flle transfer QIM, some of which may oe crlnbea from the
g115 DIM.

3) The .. transfer f lie'" command,
requests through dprint_.

'+ > The .. s ~ i t ch_ d r l v er" co mm and.

14

which wUI pr~babiy submit

HTB - o:..o 03/01/74

vrr. SUMMARY OF OAT~ MESSAGES ANO ORDER CALLS

Data Messages Between File Transfer Processes

"ready_to_attach"

''at t ach_accept ed"

"seg_header"

text

11 en d_o f _seg"

••noth .ing_t o_s end"

"end_of _sesslon"

"ack"

"nack"

drlver has issued "attach" cal1

acknowledgement of '"ready_to_attach'' message

header containing descrlptlon of segm~nt

be transmitted

actual contents 6f segment

transmission of segment ls complete

to

driver whose turn it is to send has empty
queues

driver is logging out or changing to MOS2400
driver; line will oe detached

positive acknowledgement, message r'ecelved

negative acknowledgement, previous message
not understood and should oe retransmitted

1. 5

HTB - 04& a JI o 117"

Order Cal ls Used by File Transfer Driver

••send_header ..

"receive_header"

.. nothing_to_send 11

.. end_of _sesslon 11

'"ascil ..

.. not_ascii ..

Send "seg_header" message

Block for response from
other end, should be either
"seg_header",
11 nothlnq_to_send", or
"end_of_sesslon11

Send .. notning_to_seod"
message

Send "end_of _session"
message

Enter .. ascll" mode, i.e.
data ls to be sent or
received as " ascll characters
per word

Enter "not_ascll" mode, i.e •
datd is to be ~ent or
~ecelved in 6-bit bytes

16

Contents of segment head1
< l nput»

Type of response
and contents of header
l f any <output)

none

none

none

none

