MULTICS TECHNISAL ABULLETIN MTE-0k6
03/01/7%

Tot Distrihution

From: Robert S$S. Coren and Michae! J. Grady

Subject: SOFTWARE FOR INTER-SYSTEM FILE TRANSFEIR

NDates T 03/01/74

This deccument describes a design for software to ernable files to
be transmitted between the MIT and Phoenix Multics systems, using
the new I/0 Daemon mechanisms Comments should be addressed to
Rebert S. Coran at CISL, or by malil to {oren.Multics.

This document is divided into the foltiowing sectlions:

I OVERVIEW

IT. GCOMMAND INTERFACE

ITI. NORMAL OPERATION OF FILE TRANSFIR DEIVER

Ive FILE TRANSFZR DIM -~ METHOD CF JATA TRANSFER

Va INITIALIZATION AND TERMINATION OF JRIVER PROMESS
vI. BRIZF SUMMARY COF PROGRAMMING REQUIKEMINTS

VIT. SUMMARY OF DATA MESSAGES AND ORUER CALLS

I. OVERVIEW

To facilitate the speedy transtfer of segments between two
Multics systams, W neepose to make use of tha new I/0 daemon
mechanism to Implement a3 "transfer_file™ (tf} command that queues
requests to have files transmitted atongd 3 synchronous telephone
fine. It is not expected that this facitity will be the primary
method for the trancfer of files from one system to the other,
byt rather that it will be available for the transferral! of ftliles
which are needed more quickl!y than is possible throush th2 normal
use of the carry=-tape facilitya.

In the jinitial implementation (3t least), only sagments wil! be
transferrabie Dby this faciltity {not directories and not
mul ti=-segment files), ACLs and additional names wWill not be
transferred. The capapniltity to ftransfer multi-segment files may

he added tatars but its use is not recommended because of the
1arage amount nf time reqgulired for the transmission of farae
files.

Muttics Prolect internal working documentation. Not to be
reoroduced or distributed outside the Multics Project.

i

MTB - (4o C 803701774

IT. COMMAND INTERFACE

The *"transfer_file” command wiil have the effect of a
“dprint" command with a speciail "“-device_class”™ argumentsy that

isy it will pilace a reguest iIn a daemon queue that wiiil be
processed by 3 particular type of I/0 daemon driver. The command
JUsage will be something ltike the foliowingl

transfer_fite -control_argi=- pathi =-controi_argz= =path2= ..

pathj are the pathnames of segments to be
fransterreds.

controi_arqal may be either of the foilowings?
“not_asclis The segment may contaln non=ascii data,
-na e.5e¢ 1T might be an object segment. If this
" control argument is suppliedy, the data wiil
ce transmitted in A=bit "pytes™ {see
discussion of dafa ftransfer In section Tv)$
otherwise [t wiil! be transmitted as & ascili

characters per word. This control argument
snould not be used for ascil datsy since |t
decreases transmission speed significantiys
howevery if tnis control argument is omitted,

non-ascii characters wili not be transmitted,
-queue N The reguest is to be piaced in priority
-an queue ny where 1<n<3:¢ The default is 3.
4 .
The transfer_tfile command wili probably handie I1Y¥s control

arguments Iin & manner simiiar to aprinty i.e. control arguments
wiltl apply to subseqguentivy=-named segmentse

ITITI. NORMAL OPERATION OF FILE TRANSFER DRIVER

A special! kKind of I/0 daemon “gevice driver®™ process witid
run on each Systems fne two processes wili be essentiailily
igenticaly and each wili be capapbie of either sending. or

receiving seagments. It the queues at one end have reguests in
them and the gqueues at the ofther end are empiy, the process with
the futi queues sends and the otTher one recejives. If the gqueues
at both ends are non-emptys the Two processes take turns sending
{the mechanism for this is explained further onl. To determine
wnhich one sends first Iinitiailys one of them (through sefection
of the appropriate process-owerseer entry point) Is designafted as
the "master' process and the ofther as the “slave'" process; if
both driver procasses come up with non-empty gqueues, the "master®
process gets to send first,

MTB = (ub U3/04/74u

If the gueues at both ends are empty, the »2rocesses take
turns checking their queuess; the one that first finds 8 reauest
gets to send first.

A file ftronster driver during normal operation can be
thought of as alternating between two modes, "send™ and
“recejive™. A brief description of the proposed operation of these
two modes follows.

"Send?” mode

The driver enters “send"™ mode when it receives the standard
"request ready" wakeup from the I/0 Coordinator (see MTB=-g34& for
detajls)e (As far as the coordinator 1is concerned, a fijile
transfer driver is }Just another output driver,) Upon receijipt of
this wakeup, the driver prepares a "“header’” for the segment to be
transterred; this header contains the name of the segment, its
{ength in charactersy the parson-project-id of the requestor, and

an indication of whether or not the segment is all ascil. An
order call causes this header to ne transmitted to the receiving
Processe

The actual segment, followed by an "end-of-segment™ message,
is transmitted by the Filte Transfer 0J0IM in response to 3 "“write®
calis; the sending process then performs whatever accounting is
desiredy and sends (ts coordinator a wakeup informing it that the
reaguest has been compieteds The pit used by the driver to tell
the coordinator whether it is ready to perform another outout
reguest is set to "C"b before this wakeup, because the driver
will now switch to "receive"™ mode.

TRecejve” mode

To enter “recelve™ modes the driver issues an order call
which enables it to receive a segment header from 3 sending
process at the other end of the tine. {If Iinstead of a header it
recejves a special! message Indicating "no request to send’, it
sets its "ready for reguest” it on and enters “send" mode 1f its
coordinator orovides it with a request.) It then recejves the
actual da*ta by means of a “read™ call,

The segment thus transmitted is placed in a subdirectory in
3 desjignated “file transfer”™ cdlrectory {(which wit!l initially be
>udd>Multics>Transter). Fach user of the file transfer facility
is given a private subdirectory in which his/her segments are
piaced} this avoids conflicts If two users happen *to transmit
sagments with the same entry names 0Once the segment has actually
been transferreds: the reguestor receives maijl on the receiving
system informing him of the fact,

MT8 = (w6 ' ' 13/701/7«

Supposey for example, that Smifh.Multics, logged in on fthe
MIT systems, issued the following command?

transfer_file >uddg>Muitics>Smith>fooepil

The data wou!ld be put In a segment on the PLCO system with the
pathname

>udd>Multics>Transfer>Smith>fooepl i

and Smith.Multics on the Phoenix system would receive the
foliowing mail:

From Transfer.Multicsi
foo.pli has arrjived in >udd>Muitics>Transfer>Smith

SmithsMultics would have *sm"™ access to his subdirectory In the
fiie transfer directorys so he could copy the segment into his
own hierarchy and delete it trom the file transfer sutdirectory.
He wouid nots nowevers have ™3 access to this directory:
thereforey, he cannot piant links to other parts of the hierarchy
in the file transfer subdirectory.

Wwhite & segment is being recejvedy the fiie transfer driver
sets access on it fto "null®™ for alil other JUsers; this prevents
the requestor {(or anvone eise) from accidentally picking up tne
segment in arm inconsistent statee.

Note that if SmithosMultics ftransfers fooepll twice, or
transfers two different segments wilth the same enfry name, the

earlier one will be overwritten py The later one at the recejiving
end.

Once it has received a compiete segment, the file ftransier
driver wakes up {ts coordinator to advise it that it is ready fto
sand another segments if the coordinator provides it with one, it
enters "send" moade and proceeds as described above’ otherwise |t
sends the speclal "nothing to send" message mentloned eariier,
and remains in "receive” mode.

The alternation mechanism described here ileaves us with the
proolem of what nappens when the reqguest gueues at both ends are
emptyy and in particuiar nhow transmission can be recommenced snce
a request appears in one queu2 or T he other. Thne sociution
requires that the twWO driivers take turns checking their Queues,
50 as to avoid having both of them In "send™ mode at the same
times however, we wWish to avoid The excesslive waste of resources
that would result I f these checks were made as often as possibie.

, Suppose that MIT has just complieted sending a reqgquest to
PGCy and. that the gueues at both ends are now empty. the
fol lowing steps would be ftakent

MTB - Q46 013/01/74 .

1) The PCO driver interrogates jts qgueues {through the
coordinator), finds them empty, and sends the "nothing to
send"” message described above. It than prepares to recejve a
request header in responses

2) The MIT driver, on receiving the "nothing to send"™ message,
interrogyates jts queues$ since they are empty, it sends back
3 "nothing to send” message.

3) The PCO driver now notices that nothing has been transmitted
either way since it last checked (ts queues; therefore it
goes to sleep for a short interwval (say 33 seconds) before
checkinyg 1its5 queues againe If they are still empty, it then
sends another *“nothing to send” message.

4) After receiving this message, the MIT driver Ilkewise goes
to sleep priefily before checking its gueues again: Assuming
they are stil! empty, it replies with yet another ‘nothing

to send™ message.

Steps 3) and &) are repveated untiil one of the drivers has
something to send (or termlnates the session, see Section V). It
will then enter "send™ mode and transmission will proceed as
before. The receiving driver witt turn off the flag that tells it
to 30 to sieep before the next time it checks its queues.

The salient feature of this mechanism iIs that neither driver
ever checks its queues unless the other is in "receive”™ mode}
thus 3 driver that finds a segment ready for transmission <can
immediately begin sending It without fear of a conflict,.

Operator Input to a File Transfer Driver

The normal operation of a file transfer driver never reguires
operator inputs and the driver will not check for input through
the "read_status'" order call after eackh requesty, as a regular
devite driver doess It will! accept Input after a QUIT, after
which all commands acceptable by a device driver {(“start™,
"Kitl"™y “restart™, “logout™, etc.) can be entered, but the
utility of actually sending a file transfer driver a QUIT and 2
command seems rather limited, The primary form of outside
“control™ over the file +transfer driver process will be the
“switch_driver" command described in Section ¥V of this document,

MTE - (40 03701774

IV, FILE TRANSFER DIM ~- METHOD CF OATA TRANSFER

This section will pe devoted to the discussion of the file
transfer DIM(ftd_) and the messages it will transmit and receive.

Message Formats

The design of the messages to pe used In the flie transfer
process was simptified as mucn as possibie Iin order to avoid
further changes to the ring g tfry_dim and the 335 softwares Thus
a gocod part of this design was taken from the messaye format used
by the GRTS Remote Computer Interfaces which was discussed in
MSB=11C6. The GRTS design allows the transmission of ASCII data
over synchronous communications channnelss with termination on
"ETX followed by a niock check c¢haracter. Hopefuliy, with this
designs no changes wiil be required to either the ring 0 ftty_dim
or the 355 sof tware.

The message format ifseif consists of a headery, containing
control information, foilowed by up to 503 characters of text,
terminated ny an t£tTX character and a plock check characters These
messages witl be transmitted over a synchronous liney, 7 blits per
character wWith odd parity generated and checked by the 355. This
parity check plus the additional check by the bilock check
character will aflow detection of aill 3{or less) bit errors and
most other multiple bit errorss Error correction wiii not bpe
possible with this scheme since the 355 only notifies us of the
parity errorsy but not which character. However,; detection i3 fthe
most important feature since the messsge protocol allows
retransmission of messages received [n error through the use of
ACK/NAK responsess The projacted error rate of the communications
channel is 1 in 10,330 bits and with approximateiy 530 character
messagesy we have an 2rror rate of about 1 in 415 messagess This

appears acceptabile and we should be abie to recover with one
retransmission. ;

Messages transmitted will have the failowing format:

syn syn syn 3yn soh fc sc oc stx =text chars{u=500)- etx bcc

Where!

SYnN is a syncnhronization character used to allow
the receiving 355 to beqgin .accepting
charac YerS-

soh is a start of header character ({01},

fc is 3 format code character used to indicate
the type of messauye, explainea belowe

ScC is a3 3equence code,y, ejither 101 or 102y a3nd is

MTB - 046 93/01/75%

used to prevent reprocessing ¢¢ retransmitted
data.

ocC . is an operation code containing an
acknowledgement field and a command field,
explained below.

StXx i3 a start of text char{002).

text chars _ are ASCII text characters which may be

present in a message. The various types of
text are explained belowe

etx is an end of text character{(003).

bce is the block check character, used to check
the message for errorsy also explained below.

The format code is used to describ2 the various types of
messages which can he transmitted.s A format code of 101 indicates
a3 service message. Service messages contalin no text characters
and are wused oprimarily to send commands to the other system. A
format code of 10+ indicates a segment header message, and the
text <contains a packed header for use by the driver process. The
third format codesy 1104 is the text message code and Is used when
sending the actual segmente.

The operation code contalns two fields, the acknowledgement
and the commande. The acknowledgement field is used to indicate
whether or not the last message was recejved correctiy., 4
non=-zero acknowledgement? means an error, and that the message
should be retransmitteds, The command field is wused to request
special actions or to indicate a particular state of operation,
The format of the operation code is as follows?

field meaning

unused (1 bit) always on to make the code ASCII.
ack{3 bjits) the acknowledgement field.

cmdl{3 pits) the command field,

MTE - L6 63701/ 74

Tne no-operation command(nop) [s used when no special action
is required osther than the processing of any data which may be
nresent in the message. Commands are defined on a per format code
bDasisy ie€s each format code has an associated set of command
codes. These are as follows:?

for service messages{fc = 1i1):
nop “500%p
ready_to_attach "*Hoivo
attach_accepted “Lily™p
end_of_seg *1330%e
queues_empty “161%0
end_of_session *“1410"0
for header messages(fc = 104)3
nop “i0u"0
for text messages(fc = 1410}
nop "0G60"Db
ascii_data “001"b
packed_data 0100

The service messages are used to indicate fthe state of the
driver process and are normally sent as a result of an order
call. The commanas for text messages are wWsed to jndigcate tThe
type of text in the message.

The message taxt <consists of the actual data to bDpe
transmittedy, which may te Iin two formse

1) The data may be all legal ASCII <charactersy which
will be transmitted as 1is, Data compression wili be
, used where possible and the data wiil be checked for
. two special! characters, US{037) and ETX{003)y which are
used by the system fto indicate <compression and
termination, respectivelys If eilther of the characters
are found In the text to be transmitted they will be
ignoreds The compression code wili be used when 3 or
more of the same characters are to be transmitted. When

this occurs the following format will be used?

US c¢har count

where Us(ou37) indicates compression, char Is thne
cnaracter being compressed, and count is the binary
count In the range dJ to ©3 (0 to 77 octail) with the
nigh order oity bit 7y aiways on {(to make the character
transmittable ASCLI).

MT3 - 0ub _ 03701774

2) The data may be also be any 3 bit pyte, whicn could
not be transmitted as ASCII. In this case the data will
be packed so that it may be transmitted by taking 6 bit
bytes from the source and transmitting them as 7 bit
characters with the 7th bit atways on to allow correct
transmission of sovecial characters, The compression
technique explained eartier will be applied *to these
packed characters alsoe.

Thus any segment can be transmitted using this scheme, with
decreased throughpout for non=ASZII data.

The block check character is an additional check made on
received data to insudure proper transmission. It is the exclusive
or of all the characters In the message after the SOH character,

and wil! be generated and checked by the 0IM.

QIM Desian

The OIM witl consist of one I/0 system interface module and
four main device control moduless similar in design to the
9411 5_dcm_. The interface module will make calls on the device
control modules and will be responsible for going blocked waiting
for events to occurs. The four main device control modules are?
the attach/detach module, which wit! also handle the order calls}

the read and write modules to do the actual device I/70% and an
event~cali-driven module to handle wakeups from the ring 0
tty_dime This module wiil ©bte responsible for acknowledging
messages and sending wakeups to the I/0 system interface module.

Attaching
The DIM wi!! aiways be attached in read and write mode, and
two other modes wiil also be permitted, The first is "notify"

mode which tells the DIM to abort the attach after five minutes
if unsuccessful. The other mode is either “master'™ or “siave'
mhic¢h indicates which process is to contro}l the attach sequence
of messages.

After initialization the attach module witli send Aa
“ready_*to_attach™ message. This witl be repeated every 30
seconds [f the mode is "master'™, and ewery 45 seconds if the mode
is "slave™., Note that |[f both orocesses transmit at the same
tima, both messages will be lost and thus the time difference is
required to allow the eventual correct transmission by one or the
other. Several! differant responses can be expected depending on
the line connection and the mode of the transmitting process
(fleay the first process to successfully transmit a
“ready_to_attach”™ message which is received without error), If
the line is incorrect!y set the process may recejive an MOS2400
type NAK message. If this occurs the attach wiil b2 aborted with

MTB - Q4o ' 33701774

an appropriate error code. If the transmitting grocess Is the
“stave™ then the “aaster™ will! send ancther “ready_to_attach"
message, the "slave" witl then send the *™attach_accepted”
message and await the same from the “master', Otherwise {f the
transmitting process (s the “master”, the "“stave"™ wili send fthe
“attach_accepted"” messadge and the “master™ wiill respond with the
Samee Thus the “siave* (s ailways the first +to send the
“attach_accepted”™ messagee.

Sending

The technique of wWwriting a segment to the other process will

consist of an order cali to send a header messagey followed by a
write call to write the entire contents of the segment..
The order caii that writes the header will block untii the

receiving process sends the acknowledgement,y, indicating that the
data may be transmitted.

The write caill will break tThe data down into 600-500
character messages, convert 3% z2xplained above and transmit, one
message at a time, awaiting the acknowifedgement before sendling
tne next MeSS3ges At +the completion of tfransmission the
“ond_of_segment" service message will be sent,..

If an error occurs during fransmission of a. message the
response will be a NAK, and we wiil refransmit the last message.

If the acknowladgement message was received in errory we
wifil retransmit the last messagey this time with a NAK. This
all ows the other process to ftransmif its acknowiledgement message
3gaine. ‘

Receiving

When preoaring to recejve a segment the foliowing calis

will ~be made: an order cail to NeceiVe tne header, foillowed by a
read cali to read in the segment and place it in the file system.
The order call to receive the neader wili bDlock and wait for

one of the foliowing messayges! a heagder message, a queues_empty
message, or an end_of_session message, Wwhen the message i3
received an acknowiledgement i< s2nt and the message. Type 5.
returned to the caller,

If & segment is peing sent a read caill |s made to the DIM
and the messages ara unpacked and placed in the specified
segments If no errors are found than an ACK is sent, and the DIM
blocks and waits for the next message., Otherwise a NAK [s sent
and the DIM waits for the retransmitted message,.

Upon receipt on the “end_of_seg™ message the OIM returns the

13

MTE - 046 N3/ n1/774

number of elements read.
Betaching

No messages are sent as a result of the detach call, and the
device is detached.

Ve INITIALIZATION AND TERMINATION OF DRIVER PROCESS

Certain problems are posed by'the actual physical setup at
CISL. In particulary wWwe have only one high-speed 11ine to
Phoenix, and we want to be aple to use it either for the ftransfer
of files between tha two systems or for running CISL®s MDS2400 as
a remcte oprinter through the PCO I/0 daemon. A manual switch
installed at CISL will determine whether the CISL end of the line
is connected to the MDS2400"s modem or to one [n the IPC machine
rooms the other end will be connected to the Phoenix 6183,

This situation reqguires software that can detect the status
of the switch and act accordingly. We aiso wish to be able to go
back and forth between running the MO3S2490 and the file transfer
dasmon as nearly automaticaliy as possibles The proposed design
will accomplish the transition as the result of a single command
folliowed by manual resetting of the switche

We envision & process on the PCO system whichy by means of a
special process overseer, will be prepared to run alternately as
a remote printer (ia.e. MDS2400) driver or as a file transfer
driver. When this process logs Iin initially, It attempts to come
up in norma! fashion as a driver for the MDS24(00, which {t tries
to attachs a "notify"™ mode is wused in this attach c¢all to
indicate that if no recodanizablie response i3 received within a
reasonable time (say 5 minutes), the JIM (s to return with 3
non=zero status codes Thuss 1f the tine i3 not connected to the
MDS240G, or the MDS2Ldg is not powered on, the attachment will

failt, The driver will then decide that it is to run as a3 file
transfer driver, and will try to attach the line through the fila
transfer DIM, agaln wusing "notify" mode; if there is no
responsey the driver wiltl again attempt to attach the MDS2400.

Unless the switch 15 set In an invalid position, or
something Is otherwise wrong at the CISL end, the Phoenix driver

will eventually succeed in attaching something. Then, and only
theny [t will Inform the coordinator of its existence and type;
that isy the coordinator wiltl regard the file transfer driver and

the MDS2400 driver 35 separate processes, which just happen never
to be running simul taneously.

Once the driver iz running something, switching between states

will Dbe controlied from CISLy but the control will be exercised
through the PZ0 driver process; this process will therefore ba

11

MTB - (wb 03701774

The “mas ter® process for the purpose of deciding who gets to
transmit firste. The mechanism for switching wiil be discussed
fater in this sections

Meanwnile, the file transfer driver 3t MIT {whilich couid pe
fogged In when the system came Up) attempts in simliliar fashion To
attach the Jline to £CO {without using “notify' mode}s ahen
appropriate messages nave passed pbetween fthe two systemsy; doth
drivers consider the line atrtached,.

Afrter the attachment Is completeds the “master' driver 3asks
its <coordinator for a request, If there is a segment to send, iT
immediately enters *“send™ mode and proceegs as described in
Section IIIi otherwise it sends a "nothing=to-send' message and
enters “recejve”™ mocde. The “slave” drivery meanwhiley, enters
“receive" mode immediately on completion of the attachment, If
both sets of aueuss are empty, the two drivers take turns
checking their queues as descrived Iin Section III.

The switching mechanism for the line will work as described
below.

To switch from running 1he MDSQ§Q1_10 File Transfer

A new commandy "switch™, will be added to the remote driver
command repertoires it will instruct the driver to cease running
the MDS2408 and pecome & file transfer driver. In particular,
when a ISWITCH control card s placed in the MDS2400*s card
readery the driver wiil compliete [ts current request as usual,
and then detach the MDSZ2400 and send a “logout™ wakeup Yo fhe
coordinatcrs In other wordsy from the coordinator®s point of
views the MDS2430 driver will iog outi In actual fact it will
pecome a file transfer driver and attempt to reattact the line
for file transfer, If thnis attachment succeeds, the file transfer
driver will make itseif known to the coordinatory and processing
will begin as describad above.

In order for the attachment to succeed, of course, the
manual switch has to be in the MIT=to=-PCO positions It witl pe
the responsibiility of the operator who inputs tThe “switch®
command to reset the switch.

Jo switcn frem File Transfer te the PDS24430

A Yswitch_driver"™ command will be provided that sends a
wakeup to tne file transfer driver instructing it to cease file
transmission and start running the MUS2403. Thus when the file
transfer driver comes ups it creates an event channel whosa2 name
it ptaces in a predetermined data bases in order to switch, some
other process logged in. to PGCO issues fthe "suwitch_driver"

12

MTB - pgub 33701774

command, thereby sending a wakeUp ovVer this channetl. {(Access to
the “switcn_driver®” commanc may be restricted in order to avoid
accidentss) The file transfer driver will oblock on this event
channel at the same time that it blocks for requests from the
coordinatori thus it wil! be impossible to switch while a file is
in the middle of being transmittede.

When it does receive the wakeup, the driver will send an
"end-of-session” message tp the fiie transfer driver at MIT and
send an answering wakeup to the process that [ssued the
“switch_driver®™ command, which will %type a line advising that the
manua! Switch should be resete The driver then attaches the
MDS2400 and comes up again as a remote printer driver.

MIT _drivers

Because there s only one 4B83(0-baud modem on Service at MIT,
we cannot run the MDS2400 from MIT at the same time as the flie
transfer facilitye. In fact. once the file transfer faclitity is
functional, we wil!l probably only want to run the MNS240(from
MIT when PCO is downe, Therefore the MDS2400 driver at MIT might
Just as well De togged in manually on the rare occasions when it
is neededy, rather than sharing a drocess With the file transfer
driver. {1)

When the MIT tite transfer drivar recejives an
"end-of~3ession” mesage from PL0, it detaches the line and, after
nalting a reasonanble time (so the switch can be reset), issues
anothen attach calt, without the "notify"” mode described above.
It will then simply wait blocked untii{ the PCO driver comes up
again for file transfer (in response to a "switch®™ command to the
MDS240C driver in Phoenix).

yI. BRICF SUMMARY OF PROGRAMMING REQUIREMENTS
Necessary changes 1o existing soitware

The remote-device driver software will have to accent the
“switch"™ command; some mechanism {(a separate entry point?) will
be recuired to inform 3 remote-device driver that it is capable
of becoming a fille transfer driver,

Some new parameters will have to be invented for
io_daemon_parms [In order to identjify file transfer driverss it
may simply be sufticient to define the additlonal device classy

{1) If we get 3 second modem at MIT, we could run the MDS24090
driver with "notify" mode and use it to run the MDS2440 from MIT
during file transfer.

13

MTB - L&e 03701774

since the coordinator doesn®t care what device Ls being run by
the drivery and the driver witi use tirttlie if any of the
presentiy-existing device=type~dependent dr.iver code.,.

New software reguired

1) Procedures to run the file transfer driver, some of which may
be cribbed from existing driver code,

2) A tile transfer DIM, some of which may pe cripbeg from the
g115 DIM,. .

3) The ‘“tfransfer_file™ command, which wilill propabiy submit
requests through dprintf_.

4} The “switch_driver" command.

14

MTB - 046

83701774

VII. SUMMARY OF DATA MESSAGES ANOD ORDER CALLS

Data Messages Between File Transfer Processes

Message
*ready_to_attach"
“attach_accepted”

"*seg_header"

text
“end_of_seg”

“nothing_to_sznd"

"end_of_session”

ack

“nack"

Msaning
driver has jssued "attach" call
acknowledgement of "ready_fo_afféch" message

header containing description of segment to
be transmitted

actual contents of segment
transmission of segment is complete

driver whose turn it is to send has empty
queues

driver is 1o0ogging out or changing to MDS244Q0
driver} line will pe detached

positive acknowledgement, message recejved

negative acknowliesdgement, previous message
not understood and should be reftransmitted

MTB3 - 0Lb

Order

Qrder

“send_header”

“receive_header®

“"nothing_to_send"

*end_of_session™

"asciil"™

“not_ascii™

FEffect

Send "seg_header’ message

Block for response from
other ends, should be elther
"seg_header'™,
“"nothing_to_send", or

"end_of_session®

Send “"notning_to_send*
message

Send "end_of_session"
message

Enter "ascil™ modey i.e.
dafa is to be sent or

received as 4% ascili characters

per word

Enter “not_ascii" mode,
data is to be sent or
recejved Iin b-Dit bytes

ie€s

0

037061774

-~

Calis Used by File Transfer Driver

Contents of info siructur

Contents of segment head:
{input)

Tvype of response
and contents of header
it any (outputi

fnone
none

none

none

