Multtics Technical Bulletin MT3-040D

To: UDistribution

From? Robert A. “reipurgnousa
Supjact: A Unified Command Langudage

Jdate? February by 1974

This document defines & command Janguace and command
processor that is intendad ty be a user seflacted alternative to
tha current Multics command processor, Ths linguage is suitable
for use @as an interactive or absantee Joo countreld languaje,y, and
it also is & suitable language in which to parform simple
calculartlions,.

RQesigp_Jplecrives

1+ Provide a single unified language c¢ontiining the assenticl
functions of calc, abbrav, exec_com and the currant Multics
command lenguagd.

2e Provide a commend language that can call subroutines and
functions writfen in stangard langdags3s in & natural manner
pass ing arguments and raceiving values heving &any of the
scilar dsta types of the standard langusges. Any orocedure
Wwhose arguments and return values z~e@ scalars can ba invoked
from the command processor exactly as it would be invoked
from @nother procedure, thus eliminating the need for active
functions and commands T0 ba written in & nonstanda~d style.

3« Provide & Jangusage whose [mpleamentation will par formn a
given operation using Jass CPU time ani sterege than used by
tha e€xisting command precessor and ~elasted ftacilities 1o
perform the equivajant operation.

General Concepts

Tha command language is a vary simple algorithmic language
whosa Jargest syntatic unit is a <commasnd>, fech <command> is &
conditionai or wunconditional imperative statemant which can
contain references to nam2d variables, 3axprescions, and otner
<command>s. Expressions are the familis~ pirenthesized infix and
prz2tix axpressions of Fortran or PL/I.

Multics ProjJect internal working documentation. NotT to be
reproguced or distriouted outsida the Multics Proect.

- Tha command prozessor i3 an Iinteroreter that exacutes a
sejuencs . of <ccommand>s. interpratetion of eech <command> is
performad s 3@ tWwo stage processs During tne= first staje, fthe
<commani> s processad &5 a sequence of characters. without regard
to its syntatic consTruction Oor pur’>osia as a command. It is
during this first stage that abbreviations &and parémetars are
replaced &s descrived latar., During the second 3taga cof
interpratationy, ezcCnh <command> s pua~sel (lgent ifiad) and
exacutad,

Tha command p~o2cessor cean be called by & <comnmani>. Each
invocation crectes a new set of argumentsy 3 new szt of locel
varjiablas, a new command input tile, aind a naw "“current®
aboreviation fila.

Ccp path S1 s2.+..5nN
or

cp path
or

cp

whare path is the pathnama of tha commaad input file, and =1
S2eeeSNn are the strings whicn are arguments of the new Invocation
of the command procassor., If path is omittad, commands are ~azd
from usar_input.

Paramatar Substitution and Agpreviation. leplacement

Bafore each <comnmand> 1s executed, the foliowing steps are
per formad:

ls tha <commend> is isolatad from the rest ¢f the command file
by scanning to the {Tirst 3 or <nealine> not contzined In a
<jquoted string>.

2« If the current aobreviation file designator is not null, the
<command> is examined &3 a sequence af cheérdacters. Each
<pattern> is ra2placed oy the raplacemant string defined for
that <pattern> in The @obreviation fila. After raeplacenent
of & given <puttern>, the replacad text Is scannhad,.
Scanning and replacament occurs from 13ft-to-right.

3« Each &ky where « s an <integer>, is reciaced Dby tha kth
arjument tc this invocation of the command procassor. If no
such argument existsy the &k is removeld.

4. If tne <command> do2s nNJOtT bagin Wity 4y it is 1~ranslated €s
an <execute>.

MT3-040 Pige 3

Note that by using abbraviations 1he J4ser cén aliminate the
o Frequired on esch command and can cneng? tnea syntax of commancs
to & Jimited extent.

Note thet this proposal does not include Ttha string
itaration currently 2erformed by the Multics command p~ocessor.
If that type of string processing is to ne coney 1T 3hould be
done as a part of stap 4 abova.,.

Iha _Synftax snd Semantics of commands

<command |ine>!:=<command>{i<command>]...<newline>

<commend>ii=<dafineg>{<daietar»icuse>lclist>lcwnile>ici f>}
<jeft>l<call>i<exit>i<print>i<or>i<for>j<executa>

<dz2fine>tt=, Jefine <pattarn>!i=<exc~ession>
<pattern>ii=<expression>
Causes The value of <pattern> to be ente~ed 35 en aboreviation in
tha current abbreviation file. Both tha «<pattern> and the
cexprassion> must vyiaelda string values.,
<daelete>it=.delzte <pattarn>
causes the value of <pattarm fo pe deletec from tha cur~aent
aporeviastion file. Tne <pattarn> must yielo & string value thet
is defined iIn the cu~rent aboreviation fite.
cuse>tt=,.usei<expressioun>l
causes the file idenrified by the vslue 0f <exprassion> to become
tha current aboreviation fila. If the <axprassion» is omittea cr
yi2lds a null string as its value, the current abbraviation file
designation is set null - inhibiting the replecement cft
aboreviations.
<list>ii=,list
causes the content of the current abbreviaftion file to 02 listed
an user_outpur.

<wWni le>is=,while(<expression») <groudn>

<group>tt=<command>} (<command>[j<conmand>laes)

If <axprascion> (S true, the <group> is avalumsted) of haraisa, it
is not., Upon complarion of the <group>y tha <while> is rapeatec.
Tha <expressiocn> must yield a3 logical vslue.

<jf>it=,if(caxp~ession>) <group>
If cgxoression> is truey, the <group> is evituatedy; otherwisa, it
is not., The <expression> must yield a {s2gical value.

<j:t>»ii=]et <nane> pe <axpression>
CuausSas <name> t¢ be Jdefineu 335 o Jocal varimle slloceted in the

current sStack frame. The value of tnhna veriable 1s the value
praducsed by evaluation of tha <expression>.

<call>izt=
«call <exprassion>({<expression>(y<cexpression>»l...l)

If the first <expression> is a <name> that has not been dafined
as a loce! veriabl 2, it is translated 1Into "<nama>*", and
evaluatued &s & string; otherwise, avaliation of the first
cexpression> must yiald a string In both cases, tha st~ing must
be & pathnzme that identifies an oblect segment entry point,.

Tha argument <expression>s ara evaluateu anl convertad to conform
T0o the date types spzcified by the entry definition of tha oonject
segment as described Jater.,

<exit>it=.exit
causas control to return trom the curcant invocation of the
command Processcr.

<print>ii=zprint <expression»,<axprassion>lees
caus2s the value »ot each <exprassion> to be written on
usar_ouftput in & suitaple format,

<on>Ii=.0Nn <expr~ession> do <group>
causes fThe <group> to bpe esrabliched is «n on=unit for the

conditian igentified by the string valua 2f the <expressian>,
Th2 <expression> must yiald 3 string valJye.

<for>ii=.for <name>=<expressicn>{,<axprassion>le«edISGroup>

;\

MT3-040 Page 5

Let n be the numbar of <expression>s. Far k=142yeeeny tha kih
<expression> Is aveluated and its resulting value assignad to the
locel variable <name>, and the <group> is evalucted. A <for>
definas its <nzme> @s a local variable Just like & <let>,
caxecute>ili=<st~ing> [(<string>leee
An <axacute> is transliateag into
o3l]l "estring>" (["<sTtring>"[y"<string>"Jeeel)

axcept

1, If the original <string» is a4 <quotad string»>, N0 addiftione]l
quates are used in the translation.

2. If the original <string>» has the form <name>y, 1¢ quotas are
us2d in the translation and the treaaslation is <nama>.,

Tha <exacute> (s a soacial fuorm of the <call>» that is designed to
be 2asy tc¢ type 3and comdatible witn thg exist ing command
languaga. It is-translactea into a call 3as fhe Jast step of tThe
string processing stage of interpretation.

<nasme>di=<lattar><lettar>i<digit>i_l.e,

<string>tit=<quoted string>i<cunquoted string>

<guoted string>ti="<char>se¢¢"

<cnar>ii=""}Any ASCII cnaracter excapt "

<cungucted strind>ii=<notand>. ..

<notena>is= Any ASCII cnaracter excapt 3 <newline> d2lank ¢r
tab

<n2al ine>$i=ASCII new Jine 012
czxpressicn>tt=<infix>i<prefix>i<bzsic>
<infix>iiz=<axprassion><intix-op><exd~ession>
<infix=-op>it=+l-i*i/7i¥¥|=1"=]>=f<c=i<i>ig i {i])
<prefix>ii={+i{~-] " I<exprassion>
<pasicr>ii=(<exp~asison>) {<name>!i<constant>i<functior>

<gcanstant>it=<quoted string>ic<integar>
I <real>itruelfalselinal]

Page b - MTZ3=-040

<integer>$i=<digit>e e

<r2al>tiz{<intejer>, [<inTeger>]li.<intejer >}lel+l-l<integer>].

<fudnction>ii=<expression>(l<cexpression>l,<expression>lesdl)
A function works . Jlike a call, excest thet a return value is
axpected and is converted to the corresponding command language
data tyove. E
Varisplas epnd Dsta JTypes

A local wvariadle is allocated in the steck frane of the
‘command processor. “ach variable is capabla of possassing values

of any date type,

Th2 possible data ftypes ared

+

integer (fixad bin(35))
res) (float dac(18))
Jojicel (oit(1))

string {cher(256) varying)
address (pointer, pointer)

Thise gata types are designed to accommodats sl] PL/LI and Fortren
data types except complex numbers. The convarsions oetwaan these
types and PL/I types ares givan in the following section,

A variable is da2afined py tha zppearanca of its <name> In a
<lat> or <for>. dacause the command language his no concepnt c¢f
multipls scopes of nasmes and no declared stTributes, no
declarative statements are reguireds The type of 3 variabla2 s
tha typs of the valua [t currently possessas.

Araumenl Copnversion

It an entry definition specifias no peremeters, the
arajumants, if any, are passed without conversion.

If the entry definition specifies a single ona-dimensionel
array, the srgumaents are convartad to ths: date type of the array
and <@ach a&argumant is transformed into an alement of the array.
Tha Jowz2r bound of the array descriptor is set 10 1 and the upper
bound i3 set to n,y, whare n is the numbar of arguments given.
Using this schema,y, &8 PL/I procedurs can 2as5ily receive & variasble
numbar 2f arguments Anile remiining within thne stendard ianguszge.

If the entry definition specifiss one or more sceler
arjuments, sa&ch argunent js converted to thiy date type of (ifts
corraesponding paramater, If an argunent is ¢ raferance to 23
locel varisble, it is passad by-raferenca; otherw ise, it is

MT3-040 Page 7

passed by=-value,. Whren an argument is passad by-refarence, it is
convartad to conform to tha data typa 2 f the corrasponding
parametar, and upon return it is convertad back to the origingl
type of the argument.

If the expected data typa of & callad »>rocedure is any kind
of PL/I earithmetic data, both integer and resal can be convarted
to tha axpected type. On raturn, all PL/I arlithmetic Types,
except complex, can ba converted aither to intagaer or resl.
Large dacimal values are rounded and & warning produced.

Aggregate valuas cunnot be passed o~ raceived.

PL/I bit strings, othar than Dit(1), are converted to
charactar strings.

Excessively Ion; (>256) character strings &re truncated aith
a4 Warning.

Because the command language storas addressz2s as pointer
pairs, it can hold pointer,y, offsat, label, antry, format, filey,
and araeas values as address values.

