
Multics Technical Bulletin MTB-037 

To: Distribution 

From: Steve Webber 

Subject: The Performance Problem 

Date: 01/28/74 

lntroductjon 

This memo is being produced in order to spell out many of 
the performance problems that currently exist in Multics. It is 
meant as a statement of the problem and although the memo 
hopefully gives a plan for investigating possible improvements no 
concrete changes are now being proposed. The memo is intended to 
get the performance problem analysis under way with some initial 
directions. 

The performance problem reveals itself tn many ways. 
Probably the most striking is the effect that system load has on 
system throughput. Most other systems of which I am aware 
degrade response time when the load gets heavy but the throughput 
(i.e. the amount of useful work which gets done per unit time) 
remains about the same. The Multics behavior is quite different. 
With a full hardware configuration at M.l~T. and about 10 users 
(doing something) the system utilization is quite high. The 
11 other 11 time in a 11 ttm11 printout indicates 85%-90% of the 
available processor time is being spent doing useful work for the 
users. This compares favorably with most other systems of 
comparable capability. However, when the user load gets up to 30 
or 40 the useful time drops to around 50% of the available 
processor time and 70 users is even worse. This loss of 
efficiency is accompanied by the marked degradation in response 
time that might have been expected. The Multics system loses on 
both counts. This decrease in. efficiency Is probably entirely 
due to virtual memory considerations, and although there will 
probably be some decrease In efficiency when the user load gets 
heavy, it need not be nearly as bad as it Is. 

Other ways that the performance problem appears are -listed 
below. The list ts, of course, not exhaustive but shows what 
kind of problems exist. 

1) backup can take up to 25% of the system resources; 

2) the "nothing" command takes 60 milliseconds (with no type 
ahead); 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



Page 2 MTB-037 

3) some hardcore entries take much more time to do what they 
must do than it would appear to be necessary; 

4) first time use of many commands 
longer than subsequent uses 
comnand·-s pee if i c in it i a 1 i zat ion); 

in a 
(due 

process is 
to linking 

much 
and 

5) the call/push/return sequence is much tpo costly; 

6) performance can get so bad that a user can not even get 
1 ogged In C problem in schedu 1 er as we 11 as rest of 
system); 

There are several projects that we would like to undertake 
that would require a "fast process" or at least a "fast process 
exchanger.'' The current traffic controller makes such designs 
impractical. 

Another problem which needs attention, although not directly 
related to performance, is the inequity and unpredictabll ity of 
the accounting methods used. Memory units do not do what it was 
hoped they would and .in f'act under certain loads memory unit 
charges are completely unfair. This is brought up here because 
users (system programmers In particular) will likely want to have 
reliable measures of what to con'trol when trying to program for 
maximum performance. 

Goals 

There are a few goals which might be worth mentioning as we 
proceed with the study. These goals are listed here both to 
remind us of what we are striving for, as well as to impress the 
point that much work of a substantial nature must be completed 
this year. This means real long-range options should not be 
considered as a sol ut i o·n to ou·r current performace problem. 

1) The system should· be able to run smal 1 and 1 arge 
processes (i.e. processes that require either large 
amounts of storagP or CPU time) efficiently. 

2) A scheduler should b'e provided which 

a) allows 
controlling 
etc. 

~ystem administrative interfaces for 
system load, user priority, response time, 

b) allows user visible priority changes (on validated 
request). 

c) provides information to page control and 
administrative "load levelers". 



MTB-037 Page 3 

3) The system throughput curve must not deteriorate. 

4) Some commands (and their environments) must be highly 
efficient so that a cheap service can be provided 
(BASIC, ed~, runoff, tty 1/0, fast FORTRAN, etc). 

5) The capacity of the system, in terms of throughput, 
should be Increased by at least 50% by the end of 1974. 

The rest of this memo is divided into 
descibing in more detail what areas might well be 
These sections are: 

1) the hardware constraints; 

2) the virtual memory problems; 

3) other software of interest; and 

four sections 
investigated. 

4) a list of areas for potential investigation. 

The Ayajlable Hardware 

The speed of the various hardware components on which we run 
Multics obviously plays an important role in the overall system 
performance. As it turns out, two of the components, the CPU and 
the bulk store, are not as fast as we expected. This should not 
have too much effect on the system software (the only part of the 
system we can control) except that a basic decision in the paging 
algorithm was based on a bulk store transfer rate considerably 
higher than we observe. We should carefully rethink this and 
related algorithms in light of the real speed of the bulk store. 
The other hardware features of immediate interest to a 
performance analysis is the CPU speed. The 6180 ~ith its EIS 
capability is a strikingly different machine for which to 
generate code than the 645. In addition, there are several 
instructions and modifiers which are considerably slower on the 
6180 in relation to code sequences which perform equivalent 
functions. Repeat and repeat double are slowed down considerably 
due to a crippling of the overlap features of the hardware. 
Direct modification (i.e., providing data for register loads 
without going to memory for the operand) is considerably slower 
than making the actual operand fetch from memory. Some code 
sequences can run up to 30%-40% faster if started on an even word 
rather than an odd word. These examples are meant to show that 
there are nonobvious ways to generate optimal code and although 
it could be a mistake to program such dependencies into a code 
generator it may be a val id target for investigation. 

Other hardware constraints, such as disk channel capacity, 
do have a direct bearing on performance but our current software 
can make no meaningful decisions on changing such capacities. It 



Page 4 MTB-037 

would be interesting to know how best to change the scheduler and 
paging algorithms if, say, the disk channel capacity were halved 
(doubled). 

The main features in the 6180 hardware that we did ~ot have 
in the 645 are currently or will soon be exploited. The ring 
hardware is already being fully utilized while the EIS code 
generating compiler is only awaiting hardware reliability. The 
recompilation of the system to take advantage of EIS is an 
obvious and easy (but 1 imited) way to improve performance. We 
should not depend on any performance gain here. We must find the 
flaws with the current system algorithms and strategies, 
Replacing code with faster code is '"'i~~~ ":1..rt 5~'H>"'!1d not h'." 
considered a solution to our problems. 

It may be noted that the PL/I compiler when recompiled with 
the EiS code generating compiler resulted in a compiler some 
15%-20% faster (if a 1 isting were generated). 

It turns out that some performance problems of the CPU's are 
being investigated and that some improvements may result. We 
should not, however, depend on this either. 

The Virtyal Memory Problems 

The virtual memory problem has two separate and for the most 
part independent components. These are 1) the software to 
implement the virtual memory and 2) the software that must run 
under the virtual memory. Nearly all code in Multics (including 
segment and directory control) falls into the second component. 
Page control, core control and the "file s1stem DIMs" constitute 
the first component along with the necessary capability for 
process switching provided by the traffic controller. 

One obvious area for investigation Is page contro1 and the 
algorithms it uses. For the first time in the Multics 
development I think we are forced to consider the scheduler and 
page control as a single entity with each giving more than token 
information to the other to aid in the ~xecution of their 
respective algorithms. In a~dition to new possible algorithms 
that might result from such an organization we should also 
investigate how we can optimize those parts of page control that 
are independent of specific algorithms. 

Some ideas tha~ come to mind with respect to possible 
changes to paging are: 

1) associating priority with core blocks 

2) page stealing 



MTB-037 Page 5 

3) new working set estimators 

4) bulk store optimization 

5) PC/TC integration 

6) distributed locking strategies 

7) demand prepaging 

8) scheduling changes based on paging behavior 

9) per-process page pools 

Needless to say, other ideas have been mentioned and still more 
will arise if we perform an Intense Investigation into the paging 
behavior. 

It is very 1 ikely that we will want to update and improve 
many of our metering techniques with respect to pag~ng. We, of 
course, must have faith in what our meters say, as well as be 
convinced that they are accurate enough for us to be able to make 
judgements about relatjye performance. The entire metering issue 
should be reviewed at an early time so that we will have the 
tools ready when we need them. 

The second component of the virtual memory problem (i.e., 
the success of programs running under the virtual memory) 
probably is the most important area to be Investigated in that 
here Is where the most progress can be made. Thrashing Is more 
the fault of the ·system being paged than the paging system. 
There is nothing the most sophisticated paging algorithms can do 
about a program that references hundreds of pages in a very short 
period of time. 

~hat is needed before we can proceed very far in this area, / 
however, are again better tools and meters which give us 
information about where p~oblem areas are and how the problems 
are manifested. Commands such as page_trace and 
sample_references are a first step and should be used where 
appropriate. Other commands such as meter_gate and link_meters 
give another dimension to the problem by showing how the virtual 
memory overhead actually affects system functions. The 
meter_gate program gives a clear Indication where the time is 
spent inexplicit calls to the supervisor. We should investigate 
each entry into ring O and optimize where appropriate. 

Another important tool we will need is a consistent and 
representative test load that can be applied to new systems as 
changes are made. The assurance test we have now is a good 
starting point and it could probably easily be extended to meter 
any new functions we decide are appropriate. It does have the 
disadvantage that it requires a full or at least stand-alone 



Page ti MTB-037 

configuration and hence is not as easy to use as on-1 i ne tests. 

Since the main difficulty with running programs in our 
virtual memory is apparently the working set sizes we end up 
with, we should make a strong effort to minimize these where 
possible. The bind order is mention€d often in this context but 
this is a crutch which has limited effect. What is probably 
needed is a very detailed restructuring of code, internal 
procedures and the like to get code together which is really 
needed in the same time intervals. New tools to generate page 
reference strings and the like are needed and being prepared. 

In contrast to paging code however, h; th,,_ p~·oL~sJ cf i:~;;; 1,, 

data. The stacks, 1 inkage sections, free areas, and KST are all 
commonly referenced data areas which get heavily paged. 
Minimizing the size of any of these can be of significant value. 
As a typical example the project of combining the lot and linkage 
section in the header of the stack should be revived and 
finished. 

Other data areas such as the tree structure of the PL/I 
compiler have already been reorganized to minimize paging but 
more progress can probably be made. 

Certain changes to directory control have been proposed that 
are worthy of study. Moving the lock out of the directory 
eliminates a page modification that page control can not know 
should be transparent. Also there have been structuring 
dee is ions made becau.se of paging th.at may In fact cause more 
paging. An obvious example of this is the structure of an ACL. 
The actual personid and projectid names are not stored in each 
ACL but are shared by all ACLs in a directory. This does 
minimize disk usage but it also increases paging activity. 

It has often b.een noted. that .backup could make great use of 
two new simple interfaces to the storage system. Although backup 
will be completely ~edone over the next two years it may be worth 
~riting these interfaces today. 

Another point worth mentioning Is that of the svstem working 
set. Many changes in the sy~tem have been done with the argument 
that the change only adds a fLW hundred words Can occasional page 
fault!) to a user's address space. When there are 70 users on 
the system, 40 of which run in a 10 second period, however, the 
concept of a syster;~ working set should be recognized. Apparent 
small changes .siQ havt ~n affect on the whole system. 

One last point of a general nature is that it might be 
worthwhile for more incentives to b~ available for good coding 
practices and the like. Currently there is little a programmer 
can do to generate a better program set no matter ~ow hard he 
works. If. the system rewarded those programs that exhibited ~ 
those attributes most amenable to Multics, programmers could at 



MTB-037 Page 7 

least have a target to work fo.r. They might have to sacrifice 
some to get programs to run well but if there were a set of rules 
the system recognized and a written description of these, there 
might be some hope. 

Random Optimjzatjon 

There are many areas of the system which need to be 
optimized and improved and which have nothing to do with the 
virtual memory. Poor code, unneeded generalizations, prosaic 
PL/I coding styles and remnants of EPL code exist in many areas 
of the system. The entire system should be revtewed with the 
purpose of cleaning up such code and replacing it with code for 
which the compiler can generate the best (EIS) object code. 
Coding rules have changed and these need to be written down and 
distributed. 

Besides generating better code to perform the same 
functions, we should Investigate if the functions are designed 
right to begin with. The following are typical questions of 
possible performance improvements: 

1) should the name of the working directory be 
represented as a character string in the address space 
of each ring? (Do we want a working directory per 
ring?) 

2) Same questions about the search rules. 

3) Is the find_ 
acceptable? 

mechanism of directory control 

4) Can ITP pointers really be used in argument lists? 

5) Should the many components that~- get invoked in a 
command reference Ccommand_processor_, abbrev, do, 
cl_edit, exec_com, etc.) be combined and better 
structured to permit fewer passes over the character 
strings, fewer stack frames, etc? 

6) Should we design special systems with very small KSTs, 
linkage and stacks for fast BASIC processes? 

7) Should we provide special system administrative tools 
to "wire" pages of or otherwise improve performance of 
selected subsystems Cat the expense of others)? 

The examples are typical and there are many more. We must. merely 
get to work and check into everything for which we have time. 



Page 8 MTB-03 7 

Current System Utjl jzatjon 

The following percentages (of real 
indication of where our problem areas are. 
are not exclusive (overlaps exist) and in 
fairly heavy load. 

CPU time) give a br6ad 
The percentages given 
general apply to a 

Page Faults percentage 

Ring 0 
Directories 
Process Dir Segs 
Level 2 (libraries) 

Svstem Oyerhead 

tty DIM (not interrupts) 
page faults 
seg faults/bound faults 
interrupts 

IMP 
tty DIM 
other 

total ring 0 calls 

40-45 
12-15 
30-40 
25.,30 

% 

8-9 
30-40 
2-5 

1-2 
5-10 
4-8 
40-45 

Katjo of virtual Time to Real CPU Time (efficiency?) 

Heavy Load 
Medium Load 
Light Load 

~~hat we can do 

15-30% 
50-60% 
90% 

The following Ts a list of study areas that would probably 
be worthwhile looking into. One purpose of this memo Is to come 
up with a fairly complete list of such problem areas and the 
reader is therefore urged to contact me if ·he has items which 
belong on the list. 

1) Study page contrcl for any possible .Jptimizations. 

2) Rework algorithms in light of processor and bulkstore 
speeds. 

3) Rework d 1 F,orithms for page removal by integrating the 
traffic co •. i;:rol ler. 

4) 

5) 

Redo the scheduler to take into account 
activity. 

Page steal Ing. 

paging 



MTB-037 

6) 

7) 

8) 

9) 

Page 9 

. New working set estimators. 

Several page control locks. 

Demand prepaglng. 

Update and improve all metering tools. 

10) Find which new meters are needed and generate new 
tools. 

11) Get a.consistent, representative test load. 

12) Rebind to minimize page faults - needs tools to help 
with decision. 

13) Analyze stacks, linkage, etc. 
possible. 

to shrink where 

14) Study the most convnonly used commands and subroutines 
- analyze the algorithms and code used. 

15) Study all supervisor entries for algorithms and code. 

16) Determine If the system interfaces are Inherently slow 
and inefficient. 

17) Redo directory control to minimize paging. 

18) Should we provide special interfaces for backup. 

19) Should the system reward sharing more than It does now 
(sharing can help the overall system efficiency by 
minimizing the sy§tem working set). 

20) Should a more efficient slgnall Ing mechanism be used -
should "static handlers" be available for any 
faults/signals the user wants to trap. 

21) Should the tty DIM be rewritten - or at least should 
we rewrite the call side interface routines 
Ctty_write, tty_con, etc.). 


