
MTB-035

To: MTB Distribution

From: Philippe Janson

Date: January 9, 1974

Subject; Design of a Dynamic Linker Running Outside Multics Security
Kernel

l Introduction

Now that progress on my Master's thesis is to the point where the
design of the dynamic linker running outside ring 0 is completed and the
implementation is about to start, it seems worthywhile resting a moment
to look back and think about all the implications of the design that is
p~oposed. The purpose of this paper is to review the design, to justify
the major tradeoffs between various of its aspects and to discuss its

I

consequences. The motivations and goals of the design are reviewed --
the design is then outlined. Finally, we insist again on a few points
developed in RFC-23 and add a discussion of several issues raised more
recently during the last phase of the design. The architecture of the
present dynamic linker is assumed to be known by the reader. It was
briefly outlined in RFC-23.

II Motivations

In order to enforce the security of the information stored in a
computer system, it is necessary to certify that the protection mechanism
is correctly implemented so that there exists no uncontrolled access to
the stored information. Certification requires that the security kernel
be much simpler and smaller than the supet'Visors of the present general
purpose operating systems, and of Multics in particular. Removing the
dynamic linker from Multics security kernel is motivated by certification
requirements: it is one step towards the reduction of the security
kernel complexity.

There is also a protection mofivation for having the dynamic linker
running in the user environment. The dynamic linker handles information
directly derived from source code provided by the users of the system.
There is a fair chance that such code contains -- purposely or not -­
inconsistencies capable of causing the linker to malfunction or perform
unexpected operations. In order to certify the protection mechanism, we
have to prove that malfunction or unexpected behavior cannot happen. It
is hard to think of appropriate security checks on user code because
potenti~l inconsistencies in object code are numerous, vague and essentially
unpredictable. Therefore, the only solution to enforce the protection is

Multics Project imtel'Jl8.l working documentation. Not to be reproduced or
distributed outside tae Multics Project.

-2-

to remove the linker from the security kernel so that its eventual mal­
function cannot affect the protection mechanism of the whole system.

We have just explained two reasons why the linker should be removed
from the security kernel. We still have to prove that it can be removed
from the security kernel. We claim that the linker does not need the
privileges of security kernel procedures and therefore, according to the
least privilege principle, not only should but also can run in the user
environment. We do not claim that this last assertion is obvious. In­
stead, it is the purpose of the rest of this paper to prove it.

As a last remark, we may well mention that our new design is more
conceivable on the 6180 than on the 645 because frequent cross-ring calls
resulting of this design are not more expensive.than other calls, which
was not true on the 645 machine.

III Goals

We think of the future linker as a set of procedures bound together
in one single segment. This segment will be operational for any process
in any user ring before that process needs to snap links in that ring.
The linker will never be operational or known in ring O. This implies
that ring brackets be (1,5,5), with r, e access to*·*·* • (Of.course,
access could be restricted to some category of users later on if desired.)

The linker can be called in any ring to snap a link from a segment
in that ring to any other segment in that -- and higher rings, or to gates
into lower rings (provided the user has access to the segment or gates
of course). On a linkage fault (link missing fault), the event discovered
in ring 0 (f im) will cause the machine conditions to be passed as argu­
ments. to the linker in the faulting ring. This sort of outward call will
be handled by a mechanism similar to signalling although much simpler.
The missing link will be snapped entirely in the faulting ring. On com­
pletion of this task, the control unit will be restored like in the
signalling mechanism and execution will proceed. With the above design
goals in mind, we will now carefully examine the potential problems, and
explain how the design proposes to solve them·. In a later paragraph, we
will discuss the tradeoffs and implications of the proposed design.

IV Proposed Design: Problems and Solutions

The problems to be solved by the design can be classified into three
categories with respect to their causes.

First of ~!l, our goal stated that the linker has to be operational
for any process in any ring before it is needed by that process in that
ring. This design goal raises a whole set of problems further referred to
as bootstrapping problems. These problems were solved by modifying or
designing three ring 0 concepts: system initialization, process initiali­
zation and ring initialization.

-3-

I
Secondly, once the linker is operational, we want it to execute

strictly in the faulting (calling) ring. This raises another set of
problems further referred to as user ring problems because their solu­
tion requires modifying only user ring procedures and data bases.

I

Last, but not least, the design goals applied to cross-ring link
handling have raised the need for minor hardware changes.

We will now describe the design without making any coIIUilent on its
consequences and implications. This will be done in a later paragraph.

I

1) ~ootstrapping features (ring O)

What does it mean for the linker to be operational in some ring
for some process? It means three things.

First, it implies that the linkage section of the bound linker
contain no virgin (unsnapped) link. If this were not the case, execu­
tion of the linker when handling a linkage fault would cause other
linkage faults to be taken thereby putting the process into an endless
recursive loop.

Secondly, if the linker ever is to be used in anything by a process,
it has to have a descriptor, i.e., a segment number in the address space
of the process.

I
Finally, even when the two first conditions are ket, the li~ker

will not be able to run in a ring unless its linkage section is com­
bined in that ring i.e., copied into the combined linkage segment of
that ring.

Each of the three above requirements has motivated one of the three
following ring 0 design features.

1) At System Initialization Level

The prelinking requirement is fulfilled during system initialization.
As far as system initialization is concerned, the bound linker is
considered to be an initialization data base. It is a member of
the second collection of MST segments. Aftef the first two collec­
tions of segments are loaded and prelinked (as in the present Multics
system), a special purpose initialization procedure is invoked to
carry en the prelinking of the bound linker. The entire linkage
section of the linker is scanned. Each virgin link is passed to the
standard system prelinker (pre_link_2). Notice that upon return from
the prelinker, the snapped links contain initialization segment
numbers (SLT seg #). These numbers will not be valid for use in a
user environment because the descriptor words for such numbers restrict
access to the corresponding segments to ringJO procedures. Therefore,
a suitable amount of user segment numbers (KST seg #) is reserved for

-4-

the linker and some external segments it references. A mapp-ing
from initialization segment numbers to the user reserved segment
numbers is maintained and every snapped link containing an
initialization segment number is translated into a link contain­
ing the user segment number given by the mapping. When all virgin
links are snapped and translated, the special purpose prelinking
procedure returns to its caller and initialization resumes. · All
initialization segments are discarded, leaving behind only the
linker linkage section template containing all snapped links and
the table containing the mapping of SLT numbers (and names) to
KST numbers.

The above procedure obviously implies that all segments referenced
by the linkeT be available at system initialization. To be more
specific, they all are in collection 2 of the MST. It will be
shown further that none of these segments in turn has unsnapped
links.

2) At Process Initialization Level

The requirement that the linker (and also the external segments
it references) have a segment number before it is needed is ful­
filled during process initialization. Just before a newly created
process transfers from ring 0 to a user ring for the first time,
and hence just before it can take any linkage fault, it inidates
the linker (and the segments it references). In order to do so,
it uses the segment numbers mapping table left around by the
system initializer. Each segment is initiated with its pathname
and segment number reserved for it.

On completion of this task, the process may transfer to the outer
ring. In the present system it does so by calling the linker to
get a pointer to the entry of the first user ring procedure. In
the new design, as there will be no linker available in ring O,
it will initiate the first user ring procedure and transfer .to it
at a conventional offset.

3) Ring Initialization Level

By now, the hypothetical process we were considering is in the
outer ring. It apparently can take linkage faults and yet the
third requirement that we had established is not fulfilled.
Namely the linker linkage section is not yet copied in the combined
linkage segment of the outer ring. In fact, we proved in RFC-23
that no matter what the scheme of things looks like in the outer
ring, and even if the process takes a linkage fault, the stack seg­
ment of the ring will be referenced before the combined linkage
segment. This will yield a segment fault on the stack. As a
consequence the process will execute the appropriate procedure to
fabricate the missing stack. We take advantage of this segment
fault to, at the same time, fabricate the combined linkage segment.
We call the two operations ring initialization.

-5-

Making the stack is done in a way almost similar to the present
design except that the procedure used for that purpose cannot call
the linker in ring O, like it used to, to get miscellaneous
pointers destined for the stack header. Instead, the pointers
have been fabricated and saved by the system initializer exactly
like the linker linkage section template was fabricated and saved.
When making a stack, the pointers just have to be copied into the
stack header. In addition to the current pointer, a pointer to
linker$linkage_fault is stored into the stack header for later
use.

Making the combined linkage segment is very trivial. Once an
appropriate segment is created for that purpose, its header is
initialized. The linker linkage section teEplate is copied into
the segment. The appropriate lot entry is set and all other entries
are set to all one's (see later). The search rules are in~tiaiized
as well (see later).

On completion of this third bootstrapping step, the bound linker
is fully operational in the user ring. Should the user process go
to another virgin ring, the ring initialization operations will
again happen just in the same way, thereby making the linker
operational in the new ring.

2) Hardware Modification (!): Fault Handling

At this point of our design, the linker is ready to fix links on request
and to handle linkage faults. Unlike in the present design, where a linkage
fault means a link is missing (ft2), in the new design, a linkage fault may
mean one of two things: a link is virgin but exists in the combined linkage
segment, or a linkage section is missing i.e., it is not conbined. The first
linkage fault, to be known as a link fault, is the good old fault tag 2 in the
virgin link. The second linkage fault, to be called a lot fault, is a new
type of fault be to recognized by the hardware.

In the present design, the linkage section of a segment is combined by
the linker when the segment is first referenced. In the proposed design,
this is no more the case: the linkage section of a segment is combined at
the very last moment, only when it is needed. To be even more explicit,
when a procedure is entered, it loads (PL/I_operators_ loads) the processor
lp register with the packed pointer contained in the appropriate lot entry.
As we already mentioned, ring initialization sets all lot entries to all
ones. The result of doing an lprplp on an all one's register is to be- a
fault recognized by the hardware. The need for this new feature is caused
by a desire to handle gate and non gate segments homogeneously, and by the
initial goal of having the linker running in the faulting ring.

To make things clear, suppose a ring four procedure calls a gate entry
into r g three. On the first call, this causes a link fault. In the pre­
sent design, where the linker runs in ring O, it has ~he capability of setting
the validation lev1el to three and to combine the link.jige section of the gate
being referenced for the first time. But in the new design, how could the

-6-

linker running in ring four (faulting ring) have the capability to combine
the linkage section in ring three? This is impossible and justifies. wanting
the linkage section to be combined when a procedure is first entered and
not when it is first referenced. In our example, after the call to the
gate is actually performed, the gate will attempt to load its linkage
pointer. In doing so, it will cause a lot fault resulting in the linker
being called in ring three (faulting ring) to combine the linkage section~
which it can do now since it executes in ring three·.

Both linkage faults cause the fault intercepting mechanism to save the
machine conditions and call the standard signaller. The signaller sets up
a stack frame in the faulting ring and transfers to linker$linkage_fault
th:cough the pointer stored in the stack headel:' furing ring initialization.
This entry point of the linker recognizes one or the other type of fault
and call link_snap or link_man accordingly. On completion of the fault
handling, the linker returns to the signaller·: The signaller does a .few
checks on the machine conditions and then swi~ches back to ring 0 and re­
stores the control unit.

3) User ring. features

All design features outlined in this paragraph result of the linker
ring brackets being (1,5,5). This puts some restrictions on the type of
external references, calls and arguments the linker can use.

l. Reference problems

As the linker is removed from ring O, it will no longer have
access to ring 0 data bases like kst, pds, active_hardcore_data,
etc. Even before the new design was completed, we had the ·
feeling that these restrictions were insignificant because the
linker conceptually needs no access to ring 0 data bases. This
feeling has proved to be correct: whenever the present linker
references ring 0, it does so for no real good protection reason.
In the case of the kst, the linker references the search rules.
As search rules are per ring data, there is no reason why they
should be in ring 0 in our new design. Hence we moved them to
the user rings combined linkage segments (see later). In the
case of the pds, the items referenced by the linker are either
per ring items (wdir) in which case they can be moved like the
search rules, or redundant copies of information already kept
in outer rings (pit).

The case of active_hardcore_data is more difficult to handle.
The present linker references the data base to do some metering
of linking activity. Clearly if the linker is removed from
ring O, there is no way (and no reason) for it to save metering
data in ring 0. Yet we would like to be able to keep metering
data, as in the past, on a system wide basis, and it is impossible
to do so in user rings as any user could overwrite, willfully or
not, the metering data. One potential solution is to have the
metering done by the signaller. On handling linkage faults, it
could just increment counters and meter time and paging use of
the linker.

-7-

In addition, some metering can be done by the linker itself
on a per process basis. The problems of metering both in ring 0
and the user ring is currently being examined. No definite
design is proposed yet. Suggestions are welcome.

2. f!ll. problems

Not only does the current linker reference ring 0 data bases,
but it also calls ring 0 procedures, which it won't be able to
do. Again we had felt from the beginning on that this should
cause no trouble: either the functions called by the linker
could be accessible to user rings through gate or the linker
does not really need to call the function. This feeling has also
proved to be true: all of the primitives needed by the linker
will indeed be accessible to it through hes~, other primitives
invoked by the present linker (e.g., kst_man) are not needed by
the new proposed linker.

As a result, we do not need to add any entry to h~s • Unfor-'.
tunately, we must delete a lot of entries. It turn; out that
many (over 10%) of hes_ entries are directed to some procedure
to be included in the bound linker. Such entries will therefore
become obsolete. Yet, there pr·obably exists a large number of
user ring procedures which call the soon to be obsolete gates.
For compatibility we must keep these gates around and have them
call the linker in the user ring. This poses an outward call
problem. Actually the trouble we are facing has a much broader
scope than our paper suggests. It is a problem any system pro­
grammer will encounter when trying to modify the ring 0 interface.
The solution of the problem is to split hes_ into two segments,
one of which is a user ring transfer vector and is called hes_.
This transfer vector may direct some calls somewhere else in the
calling ring (e.g., to our linker) or down to the second part of
hes_ called hcs_gate which is the actual ga'te segment into ring 0.
We will give no more details about this feature as it was exten­
sively discussed by M. D. Schroeder in MIB-024.

Finally, we discuss the case of calls to "all rings" procedures.
Clearly, if a procedure called by the linker must have ring
brackets (0,5,5), it cannot be part of the bound linker which has
brackets (1,5,5). On the other hand, the reader will remember
that during linker initialization, we snap links only in the
linker linkage section. Hence the linker which is entirely pre­
linked might call "all rings" procedures which are not: this
might lead to undesirable recursion in linkage faults. Fortunately,
only two "all rings" procedures are called by the linker and a
very elegant solution can be designed to avoid recursion in both
cases. The linker calls object_info but uses only a very little
bit of the information returned by object_info. Therefore, we can
write a much simplified version of object i*1,fo and· include it
into the bound linker without duplicating-too much code. Object_info

-8-

in turn calls no other "all rings" procedure. As to the second
procedure called by the linker, are:a_, the solution is very simple.
Area_ is called only when snapping .type 6 links. But no link
representing a symbolic reference in the tree of reference·~
generated from area_ is of type 6. Therefore, if we simply pre­
link the linker to area_ and leave area_ with a virgin linkage
section, all that could happen is taking a type 3 or 4 link
fault on a virgin link of area_ while processing a type 6 link
fault in a user program. This recursion is guaranteed to be of
at most level two and is therefore authorized.

3. Search Rules

The present linker handles the search rules directories by means
of pointers to them. When the linker tries to initiate some
segment involved in a link pair, it does so by passing a directory
pointer and an entryname to initiate.·. However, we will show later
that the use of directory pointers may violate security and
generality unless precautions are taken (see discussion later),
therefore, we must designate directories by pathnames instead of by
pointers.

Consequently search rules are a set of pathnames in the combined
linkage segment of each ring. The default search rules are
initialized in the combined linkage segment header during ring
initialization. The search rules pointer in the header is set to
point to them initially. When a user specifies his own set of
search rules (up to 22 pathnames), the rules are stored in some
available slot in the combined linkage segment of the current ring.
The search rules pointer is set to point to them but the de~ault
search rules are never erased from the ls header. They can· be
restored as the current search rules at any time.

4. Hardware modification (1): The case of gates

We have already studeid and solved one of the problems raised by cross
ring links where we developed the lot fault concept. Yet another problem is
raised in the very same context of snapping a link to a gate into a lower
ring. To translate the offset part of the symbolic reference, the linker
has to search' the definition section of the target gate. Bearing in mind
the fact that the linker is running i~ the faulting ring, i.e., the high
ring, it would not have read access to the gate segment on the present 6180
hardware. To give it access we simply suggest that the read access mode bit
in the descriptor of a segment be associated with the R3 ring bracket instead
of the R2 ring bracket. This will give the required access .fo the linker.
Again the discussion of such a feature will be postponed for the moment.

y. Proposed Design: Tradeoff and Implications

In the above chapter we have outlined the design without arguing about
anything. Of course lots of features have important implications on the
behavior of the system and implied sometimes hard choices. We hbpe we have
been able to guess what all the potential relevant questions of the reader
may be and we will now try to answer them.

-9-

1. ! system wide prelinking of the linker

At the time we are proposing to remove the linker from the security
kernel, it may seem paradoxical to prelink it at system initialization in
a protection environment which has the same capabilities as the security
kernel has during system operation. The reason of this choice was a pure
matter of economy. If the operation of prelinking had to be performed
outside ring O, it would have to be performed for eaqh single process,
once in each ring where the1, process goes. Since the result of the pre­
linking would always be the same, and since it is a "long" computation,
doing it so often is clearly not desirable.

Moreover, doing the prelinking during system initialization allows
us to use the standard prelinker thereby saving the trouble of having to
keep some other prelinker around during system operation.

Notice that the system wide prelinking of the linker implies that any
newly created process will know no other linker than the standard system
provided one. But this prevents in no way the user to replink another
linker of his own with the standard linker and to th~n discard the standard
linker and replace it by his own (even reusing the s~me segment number).

A direct implication of the system wide prelinking of the linker is
that the linker and any segment referenced by it will have the same
segment numbers in the kst 1 s of all processes.

We do not believe that this is a limitation of any sort on the
generality of kst segment numbers. As we mentioned above the user can use
the standard linker to prelink a linker of his own. Therefore he can just
as well use the standard linker to prelink another copy of the standard
linke~ using another segment number. Generality is restored for its fans!

2. !!, User ring initialization performed in ring Q

The reader may wonder why the only piece of the linking mechanism
which has not been removed from ring 0 is the procedure that fabricates
a combined linkage segment for a virgin ring.

There is no way in which it could be removed and we can prove this
very simply. Fabricating a combined linkage segment ,requires (at least) one
call to ring 0 to make this segment. This call implies the existence of a
link to the appropriate gate. Obviously if the link is to be useful, it
has to be in some linkage section of the combined linkage segment of the
current ring. 7his is absurd since we are precisely trying to fabricate
this segment!

Therefore the segment has to be fabricated in ring 0 for the user
ring. The procedure used for this purpose is invoked by the procedure
which 1abricates the stack on the assumption that where a stack is fabri­
cated, a combinf?d linkage segment will most likely be! needed.

-10-

3. Restricting the external references of the linker

We have talked about the case of the "all rings" procedure area_. We
now would like to discuss in general what sort of references exactly the
linker can use to avoid infinite recursive linkage faults.

Firstly, it can call any ring 0 gate as these are prelinked in ring O.
Secondly, it can reference any (non ring 0) data base as these have no
linkage sections and yield no further symbolic references. Thirdly, we
notice that' the linker has several somehow distinct functions: managing
linkage sections, snapping type 3 or 4 (external) links, snapping type
1 or 5 links (self referencing) and snapping type 6 (grow if not found)
links. From this distinction, we can generalize the case of area by the
following assertions: -

Any ("all rings") procedure called by the linker to manage
linkage sections must be made part of the bound linker, other­
wise trying to make a combined linkage section would yield
other lot faults and go into endles_s recursion;

The prelinking of any procedure called only to snap type 1 or 5
links can be avoided if it contains itself no type 1 or 5 .links
(which will be the case in general).

The prelinking of any procedure called only to snap type 6 links
can be avoided if it contains no type 6 links itself (again this
is most likely to be the case in general).

Any procedure called only to snap type 3 or 4 links must be part
of the bound linker, unless it contains no type 3 or 4 links
(which is not the case in general)."

4. Pathnames !!.· Segment Numbers for search rules

If search rules were segment numbers, both protection and generality
would be violated. If we used segment numbers, the procedure which would
initiate the search rules, and obviously would run in user rings, would
need a gate into the supervisor which when given a pathname would return
a segment number. But if such a gate existed, it could be used by other
procedures to find out information about protected segments (e.g., does
such a pathname exist or is the corresponding segment number within the
bounds of segment numbers initiated by a given protected subsystem?)
This is a violation of protection: although it could probably be monitored,
it would add complexity to the kernel, which we are precisely trying to
avoid.

Secondly, search rules being segment numbers would reflect the mapping
of numbers to names at the time· the search rules were initiated. Suppose
a directory being part of the search rules were deleted during the life
of a process. rhen the remaining segment numbers would be inconsistent

-11-

and meaningless. Instead a pathname is always meaningful as such: it
may or may not designate an existing directory, but i.t can always be tried
as a search rule.· Using segment numbers makes search! rules dependent on the
meaning, scope, extent and implementation of segment numbers, which is
not general.

In an attempt to guess the questions of the reader, we have investigated
the practical differences between directory pointers and pathnames. Although
one may expect a lot ot be sa.id due to the conceptual differences, the prac­
tical differences evaluate to nil. In the present system, when a search
rule pointer points to a segment, or is inconsistent, it is simply not used.
In our scheme, the corresponding pathname would be tried unsuccessfully.
The net practical result is the same. Moreover, the :segment number/directory
pointer implementation contains several built in errors like the following
for instance. If a search rule directory is terminated or deleted during
the existence of a process, and another directory is init~ated with the
segment number of the previous one, this new directory would be searched as
if it were the old one. This_would not happen with pathnames of course.

It is now time to mention that the use of pathnames instead of pointers
in the search rules is reconnnended only in a transient design phase. As
a matter of fact, we mentioned that pathnames have to be used instead of
pointers unless some precautions are taken. Because such precautions are
not implemented in the present system, we cannot use pointers. However a
a parallel project being worked on by R. G. Bratt is currently on its way
towards implementing the required features. The goal of the project is to
remove the mapping from pathnames to segment numbers from the kst and to
store it .2!! ~per ring basis. As a result of this major design change, the
search rules can and will again be segment numbers without lack of generality
or security. In designing the new linker for the transient use of pathnames
we will bear in mind the future use of segment numbers so as to simplify
the modifications required later.

5. New hardware fault

There is not much to say about this topic, except that such a tool is
really needed. Why should it be impossible to fault on a packed pointer set
to all ones just like we fault on a regular pointer with some fault tag.

We have tried to avo.id the use of a new fault, bht all other solutions
would have involved a cascad.e of difficulties and expensive software modifi­
cations: setting full pointers in the lot, using negative segment numbers
in packed pointers, adding instrµctions to test packed pointers in entry
sequences, etc., all such ideas brought up problems much more complex and
expensive than the proposed hardware improvement can ever be.

6. JteR~ gates

We conclude this chapter by discussing the second hardware modification.
Associating read access mode with the.R3 bracket of a 1segment to calculate
the access to the :segment has actually no effect at all on non gate segments.

-12-

As a matter of fact, R2 is identical to R3, by defin.ition,_ on non gate
segments. Therefore associating the r bit with R3 instead of R2 has no
effect on the protection achieved for such segments.

As far as gate segments are concerned, the effect of the m:odification
is just to make them readable from outer rings where they use to be only
callable from. Of course, subsystem programmers should be aware of this and
not store secret information in the gates of::their protected subsystems.
We also feel that the modification is conceptually just-ified: a user run-·:
ning in the outside world should be entitled "to have read access to gates
into a protected subsystem it can call. Given that a gate is a door for
the outside world, it seems conceptually reasonable to allow the outside
world to see where that door is and how it looks like. What we are trying
to protect is what is behind the gate and no~ the gate itself.

YI· Achievements of the design

1. Performance of the linker

As the goal of the design was not to improve the performance of the
linker, we will not talk about performance improvement but instead, we
will compare the performance of the proposed design.to the performance of
the present design.

To start with the comparison, we can simply say that except for a
few name changes irrelevant to performance evaluation, the new linker is
an identical, textual copy of the old linker. So far the performance of
both should be identical. The only differences are due to the use of
pathnames instead of pointers as search rules, and to the invocation of
the signaller for each linkage fault.

Using pointers as search rules required initiating pathnames once
and then using pointers directly for the search. Using pathnames also re­
quires initiating these only once but every time they are used as search
rules, there is a little extra overhead involved in ring 0 to retrieve the
pointer corresponding to the pathname. The overhead evaluates to whatever
amount of time is spent in kstsrch to translate the search rule into a
pointer. It is essentially variable depending on how fast kstsrch can find
the match and depending on how many search rules are tried for one link
on the av~rage. In the worst case, it could eventually reach 10% of the
total processing time of the .link. Of course, it is desirable to avoid
such an overhead. As a matter of fact it will only exist during the
transient period when pathnames are used. As soon as reference names are
pulled out of ring 0 (see R. G. Bratt's project) the problem will disappear.

The overhead due to the signaller is of about 100 instructions per
linkage fault, which is totally negligible w.r.t the 10,000 instructions
a normal link needs to be snapped.

-13-

On the other hand, the new design will yield some performance
improvement at the level of the linkage sections manager. The new version
of the program is aboµt 1/3 of the length of the present program. More­
over, it will not be invoked as often. In the present linker, it is
invoked every time a segment is first referenced no matter whether the
segment has a linkage section or not and no matter whether it will use it
or not. In our design, the linkage section manager is invoked on a lot
fault, at the very last moment, only where a linkage section is actually
needed.

2. Protection and Certification

Let us now see what we have achieved in the design. Protection wise,
if nothing else we have proved that the linker ~ run in user rings.
This argument alone justifies that it should run in user rings according
to the least privilege princ~ple.

Certification wise, we may have reduced the size of the security by
no more than 15,000 words out of 300;000 (8,000 text words out of 150,000)
i.e., about 5%. But the complexity -- whatever measuring unit is used
for that -- is incredibly reduced as the following figures show:

2500
650

30
15
18

very complex PL/I lines (handling lots of pointers)
alm instructions
entry points out of 1200 (2.5%)
procedures out of 300 (5%)
gates out of 160 (11%)

have been removed from the security kernel. Not only are the figures
significant, but the code of the linker is a particularly complex and
hard to audit one •

.Y.!1· Conclusions I

I
I

We have given the motivations for proposing the project. We have proved
it to be feasible. We have discussed its issues and achievements. We hope
that the reader is convinced of the positive value of such a project on the
way t<>Wards a certifiable secure system, even if certain details of the
proposal may be incompletely settled or subject to minor design changes.

