To:
From:
Date:

Subject:

MIB-033

MIB Distribution
M. D. Schroeder
January 7, 1974

Cost Comparison of TSO and Multics

The attached report by Harry Forsdick of experiments he has done

to compare the cost of using TSO on the Computation Center's 370/165 and

of using Multics may be of interest to the Multics development community.

The experiments were done as a project for the System Performance

Measurements Seminar 1 taught this fall,

comparible costs for doing the same jobs on both systems.

In general, Harry found roughly

Compared are the

costs of editing, compiling PL/I, loading, running PL/I-compiled programs,

printing, and running-off a document.

two systems is in the works, and should be interesting, since FORTRAN is

reported to be much more efficient than PL/I on the IBM system.

Multics Project internal working documentation. Not to be reproduced or
distributed outside the Multics Project.

A comparison of FORTRAN use on the

TS0 and Multics: A Cost Comparison

Harry Forsdick
6.845 - 12/17/73

“"You can't do that."”
-~ ananomous staff member of Information
Processing Center, MIT when told of my
intentlion to compare TSO with Multics. (I
forget whether the emphasls was on the first,
second, third or forth word.)
“"Comparing TSO with Multicse is like comparing a
Volkswagen with a Ferarri: you can get to the
same palce using elther vehicle, however in one
you get there with more class.”
-~ Tom van Vleck, Information Processing
Center, MIT.

I. Introduction

There are at least two g€eneral purpose interactive ccocmputer
systems that are available to the general MIT public: TSO
(Time-Sharing Option of 0S-MVT running on an IBM 370/165 computer)
and Multics (Multiplexed Information and Compyting Service running
on a aneywall 61B0 computer). These two systems have similar
goals and thus comparison between them is inevitable. The goal of

this study is to perform such a comparison in a rigorous way.

There are several areas that are comparable for these two
systems., A first cut comparison might be to contrast the respnonse
timegs of the two systems: the utility of an interactive computer
system ls best measured by the amount of time users have to wait
before their computations are completed. If users had unlimited
funds to spend on computer services, this would indeed be the best
measure., In reality, this is not the case. At this point, goet
appears to be a good measure? an accurate indicateor of the utility
of a computer system 1is how inexpensively a computation can be

rerformed. This turns out to be a popular measure because everyone

page 2 TSO and Multlicst A Cost Comparison

can relate to a monetary comparison. There are, however, other
considerations. One system would be useless 1f the computation
could not be performed because of, say, slze restrictions on the

amount of storage that is avalilabls for use. The gquestion of

whether a system has the ghlllty to sglve a task must be .
considered. Another aspect is user pleasure: if a system \is

extremely frustrating to use, the utility of that system
decreases. Finally., the gpeed of a system can be lmportant. One
system may be cheaper, but so much slower that the task cannot be

finished in a reasonable amount of time.

These filve areas -- responsgse time, cost, ability to solve a
task, user pleasure and speed -- are all useful measures in a
comparison of TS0 and Multlics. I will consider all of these

measures, but will concentrate on cost because it is a measure with
which no one can take exception: there is a well defined cost

asslgned to each interaction on both computer systems.

To further define the comparison, I will state certain
assumptions and attitudes that I have assumed in this study. The
person that is interacting with each of the computer systems 1is
assumed to be a new user of the system who has a good knowledge of
PL/I. In addition, I assume a certalin "innocence” about this user:

the actions of this user are not influenced by the implementation

of the computer system. There 1s no attempt to optimize programs
or uses of commands so0o that cost wlll be minimized. Instead, the
user interacts in whatever ways feel comfortable. In assuming that

the user takes no account of the implementation, I am showing the

effect of the limited resources used in this study. Perhaps

TSO and Multics: A Cost Comparison page 3

anocther study could be made to see how inexpensively the tasks I
will measure could be done on eath of the machines studies if the

implementation were taken into consideration.

Finally, there is a conception of the "virtual” computer
3ystem that 1s responding to ths commands being typed at an
interactive terminal. In this study, I view a terminal as an input
device to a computer system with the following subsystems:

1) a PL/T subsystem.
a) a preprocessor called a compliler.
b} a set of utility routines called a library.
c) a runner that actually does the computation.
2) a fille subsystem.
a) naming conventions, file formats.
b) list contents.
c) cost of storage.
J) a text editing subsystem.
4) a text file printing subsystem.
5) a text file formatting subsystem.
6) a program interrupter.
7) administrative functions.
a) logging on to the system, loggling off.
b) computing how much an interactlion costs.
Certainly this virtual system is influenced by the resources that

were avallable on the two systems undsr conslideration. It Lis part

of the intersection of the facilities avallable on both systems.

One final assumption will be made. The rates for service that
will be considered are the rates in effect for a weekday between
9 am and 5 pm. This has a tendency to work in the favor of TSSO
because rates for interactive service on TSO never vary. at times,
the rates for the processor servics on Multics are one half the

amount they are on weekdays. The weekday rates for the two systems

page 4 7 TSO and Mul€1¢s= A Cost Comparison

as of December 14, 1973 are found in Table 1. Processor charsges
are for the time spent by the processor of the computer system
executing instructions in response to the user’'s commands. Memory
charges are for the memory resources used in response to the user's
commands;: this is measured in different ways on the two systems
since they have different implementations of multiplexing one
physical memory amoung multiple users. Connect charges are for the
communication link from the terminal to the computer system. I/0
charges on TS0 are for input/output operations performed between
the memory and external devices (like disks). Finally, Storasge

charges are for online storage of files on secondary storage

devices.

Multics TS0
Processor 8 .075/second $.116/second
Memory $.015/memory unit $.021/Kbyte-second
Connect $.021/minute 4 .021/minute
I/0 - -———— $§ .001/ I/0 operation
Storage $.50/page/month $.50/track/month

(32,768 bits) (104,240 bits)

Table 1: Charges for Multics and TSO

One point should be made about charges verses capacities. Looking

at Table 1 and comparing the processor charges for the two machines
one might be tempted to next look at the speeds of the actual
processors and then derive some feeling for the cost of doing a
computation on the systems. As results later in this paper will
show, this would be wrong because there is no reflection., for

example, of the machine instructions produced by the compiler is

TS0 and Multics: A Cost Comparison page 5

responssg to a particular PL/I construct. What should really be
considered is the cost of a system that includes not only hardware
but also software; each system distributes charges differently over
its various parts and the final cost is the sum of the costs for

all parts.

In the next thres sections I will present a description of the
experiment performed, the results of that were observed and

finally, conclusions about the comparlson of the two systems.

II. The Experiment

To arrive at a characterization of the relative performance of
TSO and Multics with respect to cost, three computations wWere
performed on both systems and costs as well as certain of the other
characterizations described above were measured. As much as
possible, the input to the two systems was ldentical; thus, for
example, an attempt was made to write PL/I programs that would run
on both machines. The three computatlions were: a processor bound
task written in PL/I, an I/0 bound task written in PL/I and a text
formatting task written in the language understood by “Runoff”™ (for
Multicse) and “Nscript” (for TSO). In writing, inputting,
compiling, running and debugging the programs to solve these tasks.
a central part of each interactive system was us;d. By recording

the cost of each interaction with the systems, comparisons can be

made about relative costs.

The first task, referred to as "Relax”, 1s intended to be
processor bound. Imagine a pipe N units long with an M unit
circumferance. If an ideal temperature source of X degrees 1is

8

‘page 6 TSO and Multics:

A Cost Comparison

connected at one end and a second ideal temperature source of Y

degrees 18 connected to the other,

pipe,

to compute this gradient. (This

usually given to show the power of Illiac IV,

parallel processors to perform this computation efficlently.)

data structure used to represent

where an element of the array 1is

there will be a tempsrature gradient.

then along the length of the

The task of Relax is
ie a classic example that is
a machine which has
The

the pipe iIs an N+2 by M array

used to represent the temperature

on a one sguare unit of the plpe as shown in Figure 1. The first

row is assumed to be adjecent to the Mth row. The 0th column of
the array is held constant at X degrees and the N+1%t column is

held constant at Y degrees.

The computation i{s done by asslgning as the valus of each
element the average of 1ts lmmediate nelighbors. This operation is
repeated over the whole array until the values for one iteration
are within 0.5 percent of the values of the previous iteration.
This task can be made to use arbitrarly large amounts of processor
N and M. Alsao,

time and memory space by altering the sizes of no

matter how arrays are linearized in the implementation of PL/I, the
averaging of the four adjacent neighbors will cause references to

relatively distant memory locations. Appendix A contains a listing
of the program Relax that performs this computation; Relax consists

of approximately 55 PL/I statements.

X v
% = I
X oo et 5 M
X = [
X)
N
p = (a+b+c+dl)/4
Figure 1: Computation done in Relax

The second task, called Record, is aimed at being an I/0 bound
computation. In Record, the user is prompted for information about
a student’'s grades and that information is stored and later printed
out in a neat report. (I do not advocate such a practice with
student’'s grades since the confidentlially of such information 1is
not guarsentesd even on a system like Multics3. There is a lot of
interaction with the user at the terminal and most of the program
text is concerned with putting numbers out in the correct columns.
Appendix B contains a listing of the program Record. Record

consists of approximately 60 PL/I statements.

The third task, called Knuth, is a computation which is aimed
at reproducing on the terminal in a pleasantly readable form the
first page of The Art of Computer Programming, volume 1, by Donald
Knuth. This task was chosen because each system has a program that
1s aimed at formatting text and I wanted toc see how compatable the

two services were. Appendix C contains a listing of the output of

this task.

With these tasks in mind, there are a number of interesting
costs to measure. In sach of the descriptions of the subparts of
the experiment, I will indicate in parentheses a capltalized name

for the subpart. First, each of the programs will have to be

rags B TSOD and Multics: A Cost Comparison

entered in character form through a text editor to the computer
systems (EDIT3J. I will compare thée cost in terms of_dollars and
user time (connect time) needed to do the editing for one of these’
tasks, Knuth. Next, the two programs Relax and Record will have to
be preprocessed before they produce any results. This
preprocessing consists of compiling thé FL/I statements into a
language that is understood by the processor of the computer system
(COMPILE) and linking the result of that computation together with
externally defined routines that wlll handle such tasks as typing
results on the terminal (LINK). The final step 1s running the

program and recelving results at the terminal (RUN).

In the process of programming it is useful to print the
contents of a file on the terminal (a listing of Relax, for
example) (PRINT). In addition, it is interesting to find out how “\
rmuch overhead is involved in envoking a program (NOTHING -- a PL/I
program consisting of a “procedure” statement immediately followed

~

by an “end statement.); this would be, for example, the cost
charged for loading the program into the primary memory far
execution. Finally, charges are made for the space in the file
system occupied by programs and data (STORAGE):; not only the rates,
but also the amount of storage required tp do the same tasks are
interesting to compare. Table 2 contains a listing of the subparts

and the commands or programs that are relevant to the specific

systems.

In the course of this study, I have made a number of
observations about the two systems that are difficult to attach a
cost to but which certainly influence the attitude of a person

interacting with the system. This group of observations lncludes

such i1tems as the nature of error messages.,

getting data from parts other than my own,

results,

Sub-part

name

EDIT

COMPILE

LINK

RUN
PRINT

NOTHING

STORAGE

TSO and Multics:

Multics
A

edm

pll
(verslilon II)

“program name"”
(dynamic linking?

“program name”

print

“rnull program”
written in

PL/I

stored in
segments

3¢ 3¢

A Cost Comparison

response time,

etc., At the end of

I will attempt to express some of these observations.

TSOD
e
edit

pli
(optimizing)

link

call “program name”

list

“rnull program”
written in

PL/I

TSOD on-line storasge

all program versions are those that

installed from 12/1/?73 to 12/15/73.

Table 2

Commands that were used.

page 9

ease of

the

were

page 10 TsO and Multics: A Cost Comparison

IITI. Results

Before any numerical results are stated, I will describe how
costs were computed. On TSO, there is a command “eb” that types on
the terminal the Testimatsd bill” for the current terminal
session. This bill 18 broken up into charges for usage of the
processor, memory, I/0 channel and communication links. The cost
of running eb is $.0% and this fligure was subtracted out from all
cost measurements to get the trﬁe cost of an interaction. The
actual resource usage figures were derived from the cost figures
ancd the rates for services. ODn Multics, the cost of an interaction
was derived from the “ready” message. The total cost is the sum of
the cost of the processor usage, the memory usage and the
communica¥ion line usage (the time the terminal was connected to

the computer system).

Perhaps the most disturbing result of this study is the
variablility of charges on Multics. The cost of doing, say, a PL/I
compllation on Multics can vary by a factor of at least three.

This is due to variations in system load, the multiplexing of
memory by paging and the chargling algorithms, The actual
measurement glven by the ready message is quite easy to work wilith
since the incremental charges for each lnteraction are specified
explicitly. TS0 produces charges that are relatively constant for
identical tasks, however the method of getting at these figures is
awkward. The command “eb” produces a running total of charges, not
an incremental one and must be called explicitly each time the cost

of an interaction 1s needed.

TSO and Multics: A Cost Comparison page 11

As a final preface to the discussion of the numerical results,
I raust disclaim any efforts to extrapolate the results of this
paper to general results about either system. The results of this
study are a suggestion, but certalnly not the final answer tc the

question "Which system should I use?"

Tables 3 and 4 contain measuresgs of the cost broken down into
components for the elght subparts of the experiment. Most of the
notation is self explanatory except the parentheslzed numbers under
the subpart RUN. The size of the array for the Relax task is noted
as T (N,M) K", where N and M are the dimensions of the array and K
is the number of iterations over the array that were computed.

Where K is not specified, the computation completed to convergance.

For EDIT, Multics appears to be cheaper. The two editors,
“edm” and “edit” are guite simllar and one gets used to working
with either editor quite quickly. There are perhaps some defaults

on the TSO sditor that I find guestionable (all input is mapped
into upper case as &a default; the “asis” condition must be
specified If lower case 18 desired), however, this may be a
subjective opinion. Line numbering is available in the TSO editor
and can be a help or a hindrance depending on whether the user can
remember whlch mode he/she wants. It is interesting to note that
the “wall times” for inputting the text for the FORMAT task were

almost ldentical for the two systems.

page 12

Sub-Part

EDIT

COMPILE

LINK

RUN

size:

FORMAT

PRINT

NOTHING

STORAGE

Knuth

relax

record

relax
record

relax
(0,0)
(20,20
(50,50
(180,1

record

kKnuth

relax
record

nothin

relax

TSQrand-Multica= A Cost Comparlison

processor

sec $
1.9 0.55
? 0.565

5.8 0.44
8.3 0.62
0.1 0.01
0.4 0.03
0.3 6.03
) 7.3 0.54
) 100 40.4 3.03
803 1 58.9 4,490
5.7 0.43
1.9 0.15
1.2 0.09
i.4 0.11
I~ 0.1 0.01
relax pll
relax
Table 3: Costs of

Multics

memory
units $

50.5 0.75
134.8 2.02

23.5 0.35
72.1 1.08

.04
.07
.09
.65

N oo

5.6 0.08
4.1 0.06
4.5 0.07
0.6 0.01

connect

min

HHNO

©

w

o o0ooo

$

.00
.02

.00

.02

.00
.00

.00
.04
.08
.29

e

.06

.06
.06

.00

b s p f total

number

i07v4

765

1346

268

1209

177
108

76
133
165

2995

779

82

B4
97

35

1 record at $0.50/month/record
1 record at $0.50/month/record

Experiments Performed on Multics

~N W oo

i

$
.90
.30
.92
.79

.73

.10
.13

.07
.65
.21
.34

.03 ‘\

.29

.22
.23

g2

.50/month
.50/month

TSO and Multics: A Cost Comparison page 13

P
TSO
processor memory i/0 connect total
Sub-Part sec % KByteHr § Kops § . min § $
EDIT
Knuth 6.5 0.75 74,7 0.56 0.7 0.75 50 1.03 3.00
COMPILE
relax 3.2 0.37 33.3 D.25 0.3 0.34 0 0.00 0.99
: 3.6 0.42 3B8.7 0.29 0.4 0.365 1 0.02 1.07
record 3.2 0.37 33.3 0.25 0.3 0.34 o] 0.01 0.93
3.2 0.37 36.0 0.27 0.3 0.349 y] 0.01 0.99
LINK
relax 1.4 0.186 34,7 0.26 0.3 0.33 0 0.01 0.75
record 1.6 0.19 28.0 0.21 0.3 0.32 9] 0.00 g.71
RUN
relax
slizet: (0,0 WOULDN'T RUN FOR (0,0) CASE
(20,20 3.3 0.38 26.7 0.20 0.2 0.19 2 0.04 0.81
(50,50) 100 30.6 3.55 23.3 170 0.2 0.19 2 0.05 4.49
(180,180) 1 5.1 0.59 81.1 0,61 0.2 0.21 1 0.03 1.44
’-. record A 1.1 0.13 41.3 0.31 0.9 0.26 9 0.18 1.00
FORMAT
knuth 0.6 0.07 5.7 0.049 0.1 0.11 4 0.09 0.31
PRINT
relax 0.8 0.09 14.7 0.11 0.2 0.15 4 0.0¢9 0.45
record NO DATA
NOTHING
nothing c.4 0.0685 4.0 0.03 0.1 0.07 s} 0.00 0.16
STORAGE
relax relax pli 1 track at $.50/track/month $0.50/month
relax.ob] 3 tracks at $.50/track/month $1.50/month

relax.load 24 tracks at $.50/track/month $412.00/month

Table 4: Costs of Experiments Performed on TSO

page 14 TS0 and Multics: A Cost Comparison

For a short (~60 statement) program, the COMPILE part of the
experiment shows that the TS0 PL/I compiler is cheaper to run and
will respond faster under all observed loads (the highest observed
load on TSO was 28 out of 42 possible users while on Multics the
figure was 67 out of 70 possible users). Under a heavy load, the
Multics PL/I compiler responds like a compiler running on a good
batch system, The lesson here is that PL/I compilations should be
avoided on Multics during the peak load periods (2 pm to 5 pm).
The slowness of the PL/I compiler on Multics is offset by the
following consideration: a falr amount of the “work” done in
compiling, linking and running a program on Multics is done in ths
PL/I compiler. If the worst times for compliling, linking and
running Relax for the (50,50) case are added, the sum cost for
Multics is $6.23 while the sum cost for TS0 is $6.31. This
analysis 1s an indication of the different ways Multics and TSO

distribute tasks.

It is possible to write programs in PL/I that with little
alteration will compile on either system (TSO requires
“options(main)” on the main procedure, Multics does not allow this
declaration),. An interesting comparison of the compilers can be
made by attempting to complile programs that have deliberate

syntactic and semantlic errors and seeing how the compiler

responds. The Multics PL/I compiler makes no attempt to analyze
syntactic errors. It jJust notes that a syntax error occurred and
prints out the statement that is in error. The TSO PL/I compiler

(I used the Optimizing compliler because it was described as the
system standard) attempts to determine the nature of syntax errors
and in doing so, often produces messages that are difficult to

understand: several times, messages that were obviously supposed to

TSO and Multics: A Cost Comparison page 15

have fields filled in had them in their “raw” state. In general the
information contént of error messages produced by the compllers for
semantic errors is about the same; Multics is perhaps a little
kinder to the user of a slow printing terminal by abbreviating

error messages on thelr second and later appearances in a

compllation:; the TSO compller makes no attempt to do this.

The LINK part of the experiment shows that the Multics dynamic
linking facility is relatively inexpensive when compared to the TS0
“link” command. The cost of dynamic linking was determined by
envoking the program immediately after it was compiled and
Interrupting the execution after all callable routines had been
called (there are several interactlons that stop the computatlon so
that this is feasible), Then the same thing was done a second
time. The difference in cost between the two interactions i{s the
cost of dynamic linking. On TSO, linking is relatively expensive
and.at least during debugging, linking 1s done quite frequently --
at least as many times as compliling. Also, when considering the
high cost of storing the output of the link operation on TSO, the
S load” module, linking a program each time it is to be run might be
more cost effective than linking once and saving the load module.
The command T loadgo” was not studied, but I suspect it would

produce results more favorable to TSO.

In the section of the experiment concerning the running of the
PL/I programs (RUN), Multlics and TSO are reasonably close for the
I/0 bound task, Record. The differences in the implementation of
the interactive parts of PL/I are present, but not bothersome (TSO
produces a prompting character which slows the process of inputting

datal. When running the program Relax, the generality of the

page 16 TS0 and Multicse: A Cost Comparison

Multics system allowed for larger values for N and M than the TSO
system. In fact, for some unexplained reason, the TSO version of
Relax caused a “system error 0c5” for the case N = 0, M = Q! While
TSO could not allocate enough storage for the (200,200) case of
Relax, the Multics version ran into high paging rates when the

system had 67 out of 70 user and 45 out of 100 user loads.

In the tests of the formatting routines “Runoff” and
“Nscript”, the costs are almost identical, however, when couﬁled
with the higher ;ost of editing on TSUO, Multics looks like the more
deslirable system. When printing the text of the PL/I program
Relax, an linteresting effect was noted (originally pointed out by

Art Evans): Multics prints the character (space) in whatever
case the‘Selectrlc typewriter happens to be in while TSSO always
prints space in lower case. The “wall time” for printing the text
of the program Relax on Multics was 3 minutes and 35 seconds while
on.TSD, it was 4 minutes and 25 seconds! Apparently the time for
shlfting cases on a Selectric typewriter is substantial. The cost
of running the NOTHING program on TS50 was higher than on Multics.

This results probably from the large amount of PL/I operator

routines that are always bound by the “link” command on TS0, but

which were never referenced by the null programn. This result lead
Mike Schroeder to say, "NOTHING costs less on Multics.”™ Who's on
first?

Flnally., the disparity between the amount of storage required
to store compiled programs on TS0 and on Multics is remarkable.
The output of the PL/I compiler on TSO takes nine times the amount
of storage that is required by the output of the Multics PL/I

compller for the program Relax. If load modules are saved,

TSO and Multics: A Cost Comparison page 17

tremendous storage costs can bs lncurred on TS0O.

iv, Conclusions

In conclusion, I propose a scheme for programming in PL/I in
the MIT community. If the 370/165 could be connected to the APRA
Network or even if a set of spscial purpose communication lines
could be connected between the 370/165 and the 6180, then program
preparation and debugging could be done on Multics and then the
text of the debugged program could be shipped over the-
communicatlion link to TSO. After one compilation and linking., the
actual full size runs could be done on TSO or even submitted from
TSO to run on the Job Processing System in batch mode. For highly
interactive jJobs, Multics is easier and more pleasant to use, but

for speed and efficliency, TSOD is hard to beat.

page 18 o TS0 and Multics: A Cost Comparison

‘Appendix 1: Listing of Relax

relax.pll 12/15/73 1012.0 est Sat

relax:! proc:

dcl (maxi,maxj,i1,),converge,iml,ipl,jml, jpl,maxiter) fixed:;
dcl (sysin,sysprint) fliles;

dcl "{temp) float:

dcl response char(100) varying:;

dcl (mod,abs) bulltin:

dcl not_stable bit(l);

w: procimsg)l); dcl msg char(%);
put edit(msg) (&al):
rut skip:;
end:;

call w("How many cells in X and Y directions?"):
get list(max]).maxi);

call w("How many iteraticns?™); _
get list(maxiter): » “-

(nounderflowl): begin:
dcl almaxi,0imaxj+1) float:

call w(”"What i1s values for A(x,0)7");

get list(Ca(l,0)):

aCu,0) = a(l,0);

put edit("What is value for A(x,",maxj+1,")1") (a,f(4),al);
put skip:

get list(al(l,maxj+113));

alCx,maxj+1) = all,maxj+1);
do J = 1 to maxj: al(w,j) = 0.0; end:
converge = 13;

restart:
not_stable = "1"b;

do converge = converge to converge+maxiter-i1 while (not_stable);
not_stable = "0"b;)
do 1 = 1 to maxi:
do J = 1 to max]j:
Jpl = 1 + 1
ipl = mod(i,maxil) + 1:

Jml = §j - 1;
imil mod(i-2,maxi) + 1;

temp = C atiml,j) + ali,jpl) + adCipl,jl) + a(¢i,jmlid 3 / 4.g;

if abs(temp - a(i,})) > 0.05xabsCalCi, }’)
then not_stable = "1"b:

TSO and Multics: A Cost Comparison page 19

ali,J) = temp:
end:;
end:;
end:;

1f not_stable then
do:
put edit("After ",converge-1," iterations, still ™ ||
“no convergence. Continue?"”) (a,f(42);
put skip:
get editl(responsel) (a(3)):;
if response = “yes" then goto restart;
end:
else do:;
put skip; put edit("Relaxation".converge,” iterations.™)
(a,f(8),a):
call w(" Print results?”):
get edit(response) (a(3));
if response ~= "yes" then goto fin;

put skip:

do L = 1 to maxi:
put skip:
do j = 0 to rmaxj+l:

put editCaCi.jd)) (f(5,1),%x(1));

end; '

eric;

end;
fin:
end:;

return;
end:;

page 20

TSO and Multics: A Cost Comparisaon

Appendix 2: Listing of Record

record.pll 12715773 1008.6 st Sat

record! proc;

dcl
dcl
dcl

dcl
dcl
dcl
dcl

wt! proc(msg);

sysin stream input ;
sysprint stream ocutput print;
1 r(35),

2 name char(20),

2 pefll) fixed,

2 quliz(2) fixed,

2 final fixed:
response char(20) varying:
num_students fixed init(0);
(i,J,tquiz,tps,tnonzero) fixed;
tpercentnonzero float:

dcl msg char(x);

put file(sysprint) edit(msg) (a); put file(sysprintl) skip:

return:;
end;

read: proc(id:;

dcl 4 fixed;

call w("name™);

get list(r(id).namel;

if r(id).name = "end"” then return;
call w("problem sets (11)");

get list(r(i).ps(x));

call w("quizzes (2)");

get list(r(id.quiz(xd);,

call w("final™);

get list(r(id.final)d:;

return:
end;

open flle(aysprint) linesize(110);

call w("type in records with name = ‘end

as last entry™);

do L+ = 1 to 35:
call read(i);
if r(id).name = "end” then goto summary:
num_students = num_students + 1:

end:

sSummary :

call w("index name psl ps2 pe3 ped psS ps6 ps?? psB ps
“"pll gzl gz2 fin qg+f +ps =ps”);
put flle(sysprint) skip: put flle(sysprint) skip:;

TS0 and Multics: A Cost Comparison

do 4 = 1 to num_students:
put file(sysprintl) edit(i,r(i).name,r(lid).ps(x),
r{id.qulzCx),pr(i),.final)d
(f(3),co0l(?),a(20),c01(30),14(f(3),xCL32):

tgquiz = r(i).qguizd{l) + r(id.quiz(2) + r(l1).final:;
tps = 0:

do J = 1 to 11:; tpe = r(id).ps(j) + tps; end:
tnonzero = 0;

do §J = 1 to 11; Lf r(il).ps(j) ~= 0 then tnonzero =
end:;

tpercentnonzero = (float(tnonzerodl/11.03%100.0;

put file(sysprint) edit(tgquliz,tps,tpercentnonzero)
put file(sysprint) sklip;
end;

put fille(sysprint) skip;
call w("modifications?"):
get list(response)l:;

if response = "yes® then
do;
redo: call w("index?7"):
get list(i):
if £ = 0 then goto summary;

call read(i):;
goto redo:
end:;

return;
end:

page 21

thonzero + 1:

(3CFC33,x01)2)3:

page 22 TSO and Multics: A Cost Comparison

Appendix 3: Listing of Formatting operation, Knuth, vol. 1

The Art of Computer Programming page 1

Chapter 0One

Basic Concepts

“"Many persons who are not
conversant with mathematical studies
imagine that because the busliness of
(Babbage's Analytical Engine) is to give
its results in numberical notation, the
nature of its processes must
consequently be arithemetical and
numerical, rather than algebralcal and
analytical. This is an error. The
engline can arrange and combine its
numsrical guantitlies exactly as Lf they
were letters or any other general
symbolse; and in fact it might bring ocut
its results in algebralcal notation,
were provisions made accordingly.”

-- ADA AUGUSTA, Countess of Lovelace (1844)

"Wherever the term ‘computer’ or
‘digital computer' appears throughout
the text, replace it by the term ‘Data
Processor. ""™

-- from a list of errata for a digital
computer reference manual (1957)

1.1. ALGORITHMNMS

The notion of an algoprithm is basic to all of computer
programming, S0 we should begin with a careful analysis of this
concept.

The word "algorithm™ itself is qulite interesting:; at first

g€lance it may look as though someone intended to wrlte
“"logarithm” but Jjumbled up the first four letters. The word did
not appear in Hebster's New Horld Dictionary as late as 1957;: we
find only the older form "algorism”™ with its ancient meaning;
i.e., the process of doing arithmetic using Arablc numerals. In
the middle ages, abaclists computed on the abacus and algorists
computed by algorism. Following the middle ages, the origin of

this word was in doubt, and early linguists attempted to guess at

TS0 and Multlcs:! A Cost Comparison page 23

Chapter 1 Basic Concepts page 2

1ts derivation by making combinations like algiros (painful) +
arithmos (number); others said no, the word comes from "King
Algaor of Castile.” Finally, historians of mathematics found the
true origin of the word algorisme it comes from the name of a
famous Aribic textbook author, Abu Ja'far Mohammed, son of Moses .,
native of Khowarizm. Khowarlizm is today the small Soviet city

of Khiva. Al-KhowarizmT wrote the celebrated book Kitab al labr
w'al-muaabala ("Rules of restoration and reduction”):; another
word, "algebra,” stems from the title of his book, although the
book wasn't really very algebraic.

