
MTB-033

To: MTB Distribution

From: M. D. Schroeder

Date: January 7, 1974

Subject: Cost Comparison of TSO and Multics

The attached report by Harry Forsdick of experiments he has done

to compare the cost of using TSO on the Computation Center's 370/165 and

of using Multics may be of interest to the Multics development community.

The experiments were done as a project for the System Performance

Measurements Seminar I taught this fall. In general, Harry found roughly

comparible costs for doing the same jobs on both systems. Compared are the

costs of editing, compiling PL/I, loading, running PL/I-compiled programs,

printing, and running-off a document. A comparison of FORTRAN use on the

~ two systems is in the works, and should be interesting, since FORTRAN is

reported to be much more efficient than PL/I on the IBM system.

Multics Project internal -working documentation. Not to be reproa.uced or
distributed outside ~he Multics Project.

TSO and Multicsi A Cost Comparison

"You can't do that.··
-- ananomous staff member of Information
Processing Center, MIT when told of my
intention to compare TSO with Multics. CI
forget whether the emphasis was on the first,
second, third or forth word.)

"Comparing TSO with Multics ls llke comparing a
Volkswagen with a Ferarrl: you can set to the
same palce using either vehicle, however in one
you get there with more class."

-- Tom van Vleck, Information Processing
Center, MIT.

I. Introduct l on

Harry Forsdick
6.845 - 12/17/73

There are at least two general purpose interactive computer

systems that are available to the general MIT public' TSO

(Time-Sharing Option of CS-MVT running on an IBM 370/165 computer)

and Multics CMultiplexed Information and Comp~tlng Service running

on a Honeywell 6180 computer). These two systems have similar

goals and thus comparison between them ls inevitable. The goal of'

this study ls to perform such a comparison in a rigorous way.

There are several areas that are comparable for these two

systems. A first cut comparison might be to contrast the response

times of the two systems: the utility of an interactive computer

system ls best measured by the amount of time users have to wait

before their computations are completed. If users had unlimited

funds to spend on computer services, this would indeed be the best

measure. In reality, this ls not the case. At this point, ~

appears to be a good measure: an accurate indicator of the utility

of a computer system ls how inexpensively a computation can be

performed. This turns out to be a popular measure because everyone

page 2 TSO and Multics' A Cost Comparison

can relate to a monetary comparison. There are, how~ver, other

considerations. One system would be useless if the computation

could not be performed b,eca.use of, say, ·size restrictio.ns on th.e

amount of storage that Ls available for use. The question of

whether a system has the ability .t..g_ sglye a ~ must be

considered. Another aspect Ls .lLi...i...C. pleasyre: if a system is

extremely frustrating to use, the utility· of that system

decreases. Finally, the speed of a system can be important .• One

system may be cheaper, but so much slow~r that the task cannot be

finished in a reasonable amount of time.

These five areas -- response time, cost, ability to solve a

task, user pleasure and speed -- are all useful measures in a

comparison of TSO and Multics. I will consider all of these

measures, but will concentrate on cost because it is a measure with

which no one can take exception: there is a well defined cost

assigned to each interaction on both computer systems.

To further define the comparison, I will state certain

assumptions and attitudes that I have assumed in this study. The

person that is interacting with each of the computer systems is

assumed to be a new user of the system who has a Sood knowledge of

PL/I. In addition, I assume a certain "innocence" about this user:

the actions of this user are not influenced by the implementation

of the computer system. There is no attempt to optimize programs

or uses of commands so that cost will be minimized. Instead, the

user interacts in whatever ways feel comfortable. In assuming that

the user takes no account of the implementation, I am showing the

effect of the limited resources used in this study. Perhaps

TSO and Multics: A Cost Comparison

another study could be made to see how inexpensively the tasks I

will measure could be done on each of the machines studies if the

implementation ~ taken into consideration.

Finally, there ls a conception of the "virtual" computer

system that ls responding to the commands being typed at an

interactive terminal. In this study, I view a terminal as an input

device to a computer system with the following subsystems:

1) a PL/I subsystem.
a) a preprocessor called a compiler.
b) a set of utility routines called a library.
c) a runner that actually does the computation.

2) a file subsystem.
a) naming conventions, file formats.
b) list contents.
c) cost of storage.

3) a text editing subsystem.

4) a text file printing subsystem.

5) a text file formatting subsystem.

6) a program interrupter.

7) administrative functions.
a) logging on to the system, logging off.
b) computing how much an interaction costs.

Certainly this virtual system is influenced by the resources that

were available on the two systems under consideration. It ls part

of the intersection of the facilities available on both systems.

One final assumption will be made. The rates for service that

will be considered are the rates in effect for a weekday between

9 am and 5 pm. This has a tendency to work in the favor of TSO

because rates for interactive service on TSO never vary; at times,

the rates for the processor service on Multics are one half the

amount they are on weekdays. The weekday rates for the two systems

page 4 TSO and Mult1.cs1 A Cost Comparison

as of December 14, 1973 are found 1.n Table 1. Processor charges

are for the ti.me spent by the processor of the computer system

executing instructions in response to the user's commands. Memory

charges are for the memory resources used in response to the user's

commands; this is measured in different ways on the two systems

since they have different implementations of multiplexing one

physical memory amoung multiple users. Connect charges are for the

communication link from the terminal to the computer system. I/O

charges on TSO are for input/output operations performed between

the memory and external devices Clike disks). Finally, Storage

charges are for onl1.ne storage of files on secondary storage

devices.

Multics TSO

Processor $.07S/second $.116/second

Memory $.OlS/memory unl.t $.021/Kbyte-second

Connect $.021/minute $.021/minute

I/D $.001/ I/O operation

Storage $.SO/page/month $.SO/track/month
(32,768 bits) (104,240 bits)

Table 1: Charges for Multics and TSO

One point should be made about charges verses capacities. Looking

at Table 1 and comparing the processor charges for the two machines

one might be tempted to next look at the speeds of the actual

processors and then derive some feeling for the cost of doing a

computation on the systems. As results later in this paper will

show, this would be wrong because there is no reflection, for

example, of the machine instructions produced by the compiler is

TSO and Multics: A Cost Comparison

response to a particular PL/I construct. What should really be

considered is the cost of a system that includes not only hardware

but also software; each system distributes charges differently over

its various parts and the final cost ls the sum of the costs for

all parts.

In the next three sections I will present a description of the

experiment performed, the results of that were observed and

finally, conclusions about the comparison of the two systems.

II. The Exp~riment

To arrive at a characterization of the relative performance of

TSO and Multics with respect to cost, three computations were

performed on both systems and costs as well as certain of the other

characterizations described above were measured. As much as

possible, the input to the two systems was identical; thus, for

example, an attempt was made to write PL/I programs that would run

on both machines. The three computations were: a processor bound

task written in PL/I, an I/O bound task written in PL/I and a text

formatting task written in the language understood by ~Runoff- (for

Multics) and ~Nscrlpt" Cfor TSO). In writing, inputting,

compiling, running and debugging the programs to solve these tasks,

a central part of each interactive system was used. By recording

the cost of each interaction with the systems, comparisons can be

made about relative costs.

The first task, referred to as "Relax", is intended to be

processor bound. Imagine a pipe N units long with an M unit

circumferance. If an ideal temperature source of X degrees ls

TSO and Multics1 A Cost Comparison

connected at one end and a second ideal temperature source of Y

degrees is connected t~ the other, then along the length of the

pipe, there will be a temperature gradient. The task of Relax Ls

to compute this gradient. (This is a classic example that is

usually given to show the power of Illiac IV, a machine which has

parallel processors to perform this computation efficiently. l The

data structure used to represent the pipe is an N+2 by M array

where an element of the array is used to represent the temperature

on a one square unit of the pipe as shown in Figure 1. The first

row is assumed to be adjacent to the Mth row. The oth column of

the array is held constant at X degrees and the N+1st column is

held constant at Y degrees.

The computation is done by assLgnLng as the value of each

element the average of Lts immediate neighbors. This operation ls

repeated over the whole array until the values for one iteration

are within 0.5 percent of the values of the previous iteration.

This task can be made to use arbltrarly large amounts of processor

time and memory space by altering the sizes of N and M. Also, no

matter how arrays are linearized in the implementation of PL/I, the

averaging of the four adjacent neighbors will cause references to

relatively distant memory locations. Appendix A contains a listing

of the program Relax that performs this computation; Relax consists

of approximately 55 PL/I statements.

TSO and Multics: A Cost Comparison page 7

x ~

x ~ 1

x e~ct ~ M
x ~ ~
x ~

N
p = Ca+b+c+d)/4

Figure 11 Computation done in Relax

The second task, called Record, is aimed at being an I/D bound

computation. In Record, the user is prompted for information about

a student's grades and that information ls stored and later printed

out in a neat report. CI do not advocate such a practice with

student's grades since the confidentially of such information ls

not guarenteed even on a system like Multics). There Ls a lot of

interaction with the user at the terminal and most of the program

text is concerned with putting numbers out in the correct columns.

Appendix B contains a listing of the program Record. Record

consists of approximately 60 PL/I statements.

The third task, called Knuth, ls a computation which ls aimed

at reproducing on the terminal in a pleasantly readable form the

first page of The Art of Computer Programming, volume 1, by Donald

Knuth. This task was chosen because each system has a program that

is aimed at formatting text and I wanted to see how compatable the

two services were. Appendix C contains a listing of the output of

this task.

With these tasks in mind, there are a number of interesting

costs to measure. In each of the descriptions of the subparts of

the experiment, I will indicate in parentheses a capitalized name

for the subpart. First, each of the programs will have to be

page 8 TSO and Multics: A Cost Comparison

entere~ in ch•racter form through a t.ext •ditor to the comput•~

systems CEDIT). I will compare th• cost ln terms of dollars arrd

user time (connect time) needed to do the editing for one of thase

tasks, Knuth. Next, the two programs Relax and Record will have to

be preprocessed before they produce any results. This

preprocessing consists of compiling th8 PL/I statemerits into a

language that is understood by the processor of the computer system

CCOMPILE) and linking the result of that computation together with

externally defined routines that will handle such tasks as typing

results on th~ terminal CLINK). The final step ls running th•

program and receiving results at the terminal CRUN).

In the process of programmlng it is useful to print the

contents of a file on the terminal Ca listing of Relax, for

example) CPRINT). In addition, it ls interesting to find out how

much bverhead ls involved in envoking a program (NOTHING -- a PL/I

program consisting of a ~procedure" statement immedlately followed

by an "end"" statement.); this would be, for example, the cost

charged for loading the program into the primary memory for

executlon. Finally, charges are made for the space ln the file

system occupi~d by programs and data (STORAGE); not only the rates,

but also the amount of storage required to do the same tasks are

interesting to compare. Table 2 contains a listing of the subparts

and the commands or programs that are relevant to the specific

systems.

In the course of this study, I have made a number of

observations about the two systems that are difficult to attach a

cost to but which certainly influence the attitude of a person

interacting with the system. This group of observations includes

TSO and Multics• A Cost Comparison page '3

such items as the nature of error messages, response time, ease of

getting data from parts other than my own, etc. At the end of the

results, I will attempt to express some of these observations.

Sub-part
name

EDIT

COMPILE

LINK

RUN

PRINT

NOTHING

STORAGE

Multics

**

edm

pl1
Cversion II)

"program name""
Cdynamic linking)

""program name

print

"null program""
written in
PL/I

stored in
segments

TSO

**

edit

pli
(optimizing)

link

call ""program name

list

"null program""
written in
PL/I

TSO on-line storage

"'* all program versions are those that
installed from 12/1/73 to 12/15/73.

Table 2: Commands that were used.

were

page 10 TSO and MUlt ics :. A Cc:st Cc.mpar isc.n

III. Results

Before any numerical resu.lts are stated, I will des-cr.ibe how

costs were computed. On TSO, there is a command •ebw that types on

the terminal the •estimated bill# for the current terminal

session. This bill is broken up into charges for usage of the

processor, memory, I/O channel and communication links. The cost

of running .!U2. is $.09 and this figure was subtracted out from all

cost measurements to S:et the true cost of an inte~action. The

actual resource usas:e figures were derived from the cost figures

and the rates for s~rvices. On Multics, the cost of an interaction

was derived from the -ready# message. The total cost is the sum of

the cost of the processor usage, the·memory usage and the

communication line usage Cthe time the terminal was connected to

the computer system),

Perhaps the most disturbing result of this study is the

variability of charges on Multics. The cost of doing, say, a PL/I

compilation on Multics can vary by a factor of at least three.

This is due to variations in system load, the multiplexing of

memory by paS:lng and the charging algorithms. The actual

measurement S:lven by the ready message ls quite easy to work with

since the incremental charges for each interaction are specified

explicitly. TSO produces charges that are relatively constant for

identical tasks, however the method of S:ettinS: at these figures is

awkward. The command webw produces a running total of charges, not

an incremental one and must be called explicitly each time the cost

of an interaction ls needed.

TSO and Multicsi A Cost Comparison page 11

As a final preface to the discussion of the numerical results.

I must disclaim any efforts to extrapolate the results of this

paper to general results about either system. The results of this

study are a suggestion, but certainly not the final answer to the

question "Which system should I use7"

Tables 3 and 4 contain measures of the cost broken down into

components for the eight subparts of the experiment. Most of the

notation ls self explanatory except the parenthesized numbers under

the subpart RUN. The size of the array for the Relax task is noted

as ~CN,M) K", where N and Mare the dimensions of the array and K

is the number of iterations over the array that were computed.

Where K ls not specified, the computation completed to convergance.

For EDIT, Multics appears to be cheaper. The two editors,

·edm- and •edit• are quite similar and one gets used to working

with either editor quite quickly. There are perhaps some defaults

on the TSO editor that I find questionable Call input Ls mapped

into upper case as a default; the •asls• condition must be

specified if lower case ls desired), however, this may be a

subjective opinion. Line numbering is available in the TSO editor

and can be a help or a hindrance depending on whether the user can

remember which mode he/she wants. It Ls interesting to note that

the •wall times• for inputting the text for the FORMAT task were

almost identical for the two systems.

TSO and Multlcs: A Cost Comparlson page 13

TSO

processor memory l/o connect total
Sub-Part sac $ KByteHr $ Kops $ mln s· $

EDIT
knuth 6.5 0.75 74.7 0.56 0.7 0.75 50 1. 03 3.00

COMPILE
relax 3.2 0.37 33.3 0.25 0. 3 0.34 0 0.00 0.99

3.6 0.42 38.7 0.29 0.4 0.35 1 0.02 1. 0 7

record 3.2 0.37 33.3 0.25 0. 3 0.34 0 0. 0 l 0.93
3.2 0.37 36.0 0.27 0.3 0.34 0 0. 01 0.99

LINK
relax 1. 4 0.16 34.7 0.26 0.3 0.33 0 0. 01 0,75
record 1.6 0.19 28.0 0.21 0. 3 0.32 0 0. 0 0 0. 71

RUN
relax

size: (0 , 0) WOULDN'T RUN FOR (0, 0) CASE
(20,20) 3.3 0.38 26.7 0.20 0. 2 0.19 2 0.04 0.81
(50,50) 100 30.6 3.55 93.3 170 0. 2 0.19 2 0.05 4.49
ClB0,180) 1 5.1 0.59 81.1 0.61 0. 2 0.21 1 0,03 1.44

,... record l. 1 0.13 41. 3 0.31 0.4 0.26 9 0.18 1.00

FORMAT
knuth 0.6 0.07 5.7 0. 04 0. 1 0.11 4 0.09 0.31

PRINT
relax 0.8 0. 09 14.7 0.11 0. 2 0.15 4 0.09 0.45
record NO DATA

NOTHING
nothing 0.4 0. 05 4. 0 0.03 0.1 0.07 0 0. 0 0 0.16

STORAGE
relax relax pli 1 track at S.50/track/month $0.50/month

relax.obj 3 tracks at $.50/track/month $1.50/month
relax.load 24 tracks at $.SO/track/month $12.00/month

Table 4: Costs of Exparime1'lts Performed on TSO

pa.ge 14 TS:O an·d Multics 1 A Cost Comparison

For a short c ... 60 statement) pro:gram, the COMPILE part of the·

experiment shows that the TSO PL/I compiler is cheaper to run and

will raspond faster under all observed loads Cthe hiChest observed

load on TSO was 28 out of 42 possible users while on Multics the

figure was 67 out of 70 possible users). Under a heavy load, the

Multics PL/I compiler responds like a compiler running on a good

batch system. The lesson here ls that PL/I compilations should be

avoided on Multics during the peak load periods C2 pm to S pm).

The slowness of the PL/I compiler on Multics is offset by the

following consideration: a fair amount of the ~work" done in

compiling, linking and running a program on Multics is done in the

PL/I compiler. If the worst times for compiling, linking and

running Relax for the CS0,50) case are added, the sum cost for

Multics is $6.23 while the sum cost for TSO is $6.31. This

analysis is an indication of the different ways Multics and TSO

distribute tasks.

It is possible to write programs in PL/I that with little

alteration will compile on either system CTSO requires

~optionsCmain)# on the main procedure, Multics does not allow this

declaration). An interesting comparison of the compilers can be

made by attempting to compile programs that have deliberate

syntactic and semantic errors and seeing how the compiler

responds. The Multics PL/I compiler makes no attempt to analyze

syntactic errors. It just notes that a syntax error occurred and

prints out the statement that is in error. The TSO PL/I compiler

CI used the Optimizing compiler because it was described as the

system standard) attempts to determine the nature of syntax errors

and in doing so, often produces messages that are difficult to

understand; several times, messages that were obviously supposed to

TSO and Multicsr A Cost Comparison page 15

have fields filled in had them in their ~raww state. In general the

information content of error messages produced by the compilers for

semantic errors is about the same; Multics is perhaps a little

kinder to the user of a slow printing terminal by abbreviating

error messages on their second and later appearances in a

compilation; the TSO compiler makes no attempt to do this.

The LINK part of the experiment shows that the Multics dynamic

linking facility is relatively inexpensive when compared to the TSO

-link~ command. The cost of dynamic linking was determined by

envoking the program i~mediately after it was compiled and

interrupting the execution after all callable routines had been

called Cthere are several interactions that stop the computation so

that this is feasible). Then the same thing was done a second

time. The difference in cost between the two interactions is the

cost of dynamic linking. On TSO, linking is relatively expensive

and at least during debugging, linking is done quite frequently

at least as many times as compiling. Also, when considering the

high cost of storing the output of the link operation on TSO, the

-load• module, linking a program each time it is to be run might be

more cost effective than linking once and saving the load module.

The command •1oadgo" was not studied, but I suspect it would

produce results more favorable to TSO.

In the section of the experiment concerning the running of the

PL/I programs CRUNJ, Multics and TSO are reasonably close for the

I/O bound task, Record. The differences in the implementation of

the interactive parts of PL/I are present, b~t not bothersome CTSO

produces a prompting character which slows the process of inputting

data). When running the program Relax, the generality of the

page 16 TSO an~ Multica1 A C~st Comparison

Multics system allowed for larger values for N and M than the TSO

syst€m. In fact, for some unexplained reason, the TSO version of

Relax caused a ~system error OcSw for the case N = 0, M While

TSO could not allocate enough storage for the C200,200l case of

Relax, the Multics version ran into high paging rates when the

system had 67 out of 70 user and 45 out of 100 user loads.

In the tests of the formatting routines •Runoff- and

~Nscript-, the costs are almost identical, however, when coupled

with the higher cost of editing on TSO, Multics looks like the more

desirable system. When printing the text of the PL/I program

Relax, an interesting effect was noted (originally pointed out by

Art Evans): Multics prints the character (space) in whatever

case the Selectric typewriter happens to be in while TSO always

prints space in lower case. The ·wall timew for printing the text

of the program Relax on Multics was 3 minutes and 35 seconds while

on TSO, it was 4 minutes and 25 seconds! Apparently the time for

shifting cases on a Selectric typewriter is substantial. The cost

of running the NOTHING program on TSO was higher than on Multics.

This results probably from the large amount of PL/I operator

routines that are always bound by the •1inkw command on TSO, but

which were never referenced by the null program. This result lead

Mike Schroeder to say, "NOTHING costs less on Multics."

first7

Who's on

Finally, the disparity between the amount of storage required

to store compiled programs on TSO and on Multics is remarkable.

The output of the PL/I compiler on TSO takes nine times the amount

of storage that is required by the output of the Multics PL/I

compiler for the program Relax. If load modules are saved,

TSO and Multics: A Cost Comparison page 17

tremendous storage costs can be lncurred on TSO.

IV. Conclusions

In conclusion, I propose a scheme for programming in PL/I in

the MIT community. If the 370/165 could be connected to the APRA

Network or even if a set of special purpose communication lines

could be connected between the 370/165 and the 6180, then program

preparation and debugging could be done on Multics and then the

text of the debugged program could be shipped over the·

communication link to TSO. After one compilation and linking, the

actual full size runs could be done on TSO or even submitted from

TSO to run on the Job Processing System in batch mode. F'or highly

interactive jobs, Multics is easier and more pleasant to use, but

for speed and efficiency, TSO is hard to beat.

page 18 .· TSO and Multics: A Cost Com~arlson

·App.en.dlx 11 Llatlng of Relax

relax.pl1 12/15/?3 1012.0 est Sat

relax: proc;

dcl
dcl
dcl
dcl
dcl

Cmaxl,maxj,l,j,converge,lm1,lpl,jm~.jpl,maxlter) flxed;
Csysln,sysprlnt) file;
(temp) float;
response charC100) varying;
Cmod,abs) bulltin;

dcl not_stable bltCl)J
w: procCmsg); dcl msg char(*);

put editCmsg) Cal;
put skip;

end;

call
get

wC"How many cells
listCmaxj,maxi);

in X and Y dlrectlons7");

call wC"How many lteratlons7")J
get llstCmaxlter);

Cnounderflow): begin;
dcl aCmaxl,Q:rnaxJ+1) float;

call wC"What is value for AC*,0)7");
get llstCaC1,Q));
a.(>11,Q) = aC1,Q);
put edltC"What ls value for A~*•",maxj+l,")7") Ca,fC4),a);
put sl~ip;

get llstCaC1,maxj+1));
a(m,maxj+l) = aC1,maxj+l);

do j = 1 to maxj; aC*,j) = O.D; end;

converge = 1·;
restart:

not_stable = "l"b;

do converge = converge to converge+maxiter-1 while Cnot_stable);
not_stable = "O"bJ
do l = 1 to maxi;

do j = l to maxj;
jp1 j + 1;
lp1 rnodCl,maxi) + 1;
j ml = j - 1;
lml = modCi-2,maxi) + 1;

temp= C aCiml,jJ + a(i,jpll + aCip1,j) + aCl,Jm1l

if absCtemp -·aci,j)) > O.OS*absCaCl,j))
then not_stable = "1"b;

) /
4 •..iii\

TSO and Multics: A Cost Comparison

aCi,j) =temp;
end;

end;
end;

if not_stable then
do;

page 1'3

put editC"After ",converge-1," iterations, still I I

fin:

"no convergence. Continue?") Ca,fC4));
put skip;
get editCresponse) CaC3));
if response = "yes" then goto restart;

end;
else do;

put skip; put editC"Relaxation",converge," iterations.")
Ca,fC6J,a);

call we" Print results?">;
get editCresponsel CaC3));
if response ~= "yes" then goto fin;

put skip;

do i = 1 to maxi;
put skip;
do j = 0 to maxJ+l;

put editCaCi,j)) CfC5,1),xC1));
end;

end;
end;

end;

return;
end;

page 20 TSO and Multics: A Cost Comparison

Appendix 2: Listing of Record

record.pl1 12/15/73 1008.6 '"1St Sat

record: proc;

dcl sysin stream input
dcl sysprint stream output print;
dcl 1 rC35),

2 name char(2Q),
2 ps(11) fixed,
2 quizC2) f!.xed,
2 final fixedJ

dcl response charC20) varying;
dcl num_students fixed in!.tCO);
dcl
dcl

Ci,j,tquiz,tps,tnonzero) fixed;
tpercentnonzero float;

w1 procCmseP; dcl msg char(>1<);
put fileCsysprint) editCmsg) Ca); put fileCsysprint) sk1p;
return;

end;

read: proc(i); dcl i fixed;
cal l w C "name:") ;
get l!.st(r(i).name);
if r(i).name "end" then return;
call wC"problem sets (11)");
get listCrCil.ps(•))J
call wC"quizzes (2)");
get list(r(i).quiz(>I<));
call w("final");
get list(r(i),final);
return;

end;

open fileCsysprint) linesizeC110);

call w("type in records with name = 'end' as last entry");

do i 1 to 35;
call read(i)J

en cl;

summary:

if rCil.name • "end" then goto summary;
num_students • num_students + 1;

c a 1 l w C " i n de x name p s 1 p s 2 p s 3 p s 4 p s 5 p s 6 p s 7 p s 8 p s 9 p 1 0 I i
"pll qzl qz2 fin q+f +ps :ps"); 'All\

put fileCsysprint) skip; put fileCsysprint) skip;

-

t

I

TSO and Multica1 A Cost Comparison

do 1 = 1 to num_students;
put ·fileCsysprint) editCi,rCLLname,rCiLpsC>1<),

r(i),quiz(*),r(i).finall
Cf(3),colC7l,aC20),colC30),14CfC3l,xC1)));

tquiz = r(il.quiz(l) + r(i),quiz(2) + r(i).final;

tps·= O;
do j = 1 to 11; tps = r(i),ps(j) + tps; end;

t11onzero = O;

page 21

do j = 1 to 11; if r(i),ps(j) ~= 0 then tnonzero = tnonzero + 1;
end;

end;

tpercentnonzero s CfloatCtnonzero)/11.0l*lOO.O;

put fileCsysprint) editCtquiz,tps,tpercentnonzero) C3CfC3),xC1)));
put fileCsysprint) skip;

put fileCsysprint) skip;
call wC"modifications7");
get listCresponse);
if response = "yes" then

do;
redo: call wC"index7"l;

get listCi);
if i = -0 then goto summary;
call readCi);
goto redo;

end;

return;
end;

page 22 TSO and Multi.cs: A Cost Comparlson

Appendix 3: Listing of formatting operation, Knuth, vol. 1

The Art of Computer Programming

Chapter One

Basic Concepts

"Many persons who are not
conversant with mathematical studies
imagine that because the business of
CBabbage's Analytical Engine) is to give
its results in numberical notation, the
nature of its processes must
consequently be arithemetical and
numerical, rather than algebral.cal and
analytical. This is an error. The
engine can arrange and combine its
numerl.cal quantitl.es exactly as if they
were letters or any other general
symbols; and in fact Lt might brlng out
its results in algebral.cal notation,
were provisl.ons made accordl.ngly."

ADA AUGUSTA, Countess of Lovelace C1844)

"Wherever the
'digital computer'
the text, replace
Processor.'"

term 'computer' or
appears throughout

1.t by the term 'Data

from a list of errata for a digital
computer reference manual C1957l

1 . 1 . ALGORITHMS

page 1

The notion of an al~orithm 1.s basic to all of computer
programming, so we should begin with a careful analysis of this
concept.

The word "algorithm" itself is quite interesting; at first
glance Lt may look as though someone intended to write
"logarithm" but jumbled up the first four letters. The word did
not appear in Webster'R.. N.sui World Dictionary as late as 1957; we
find only the older form "algorlsm" wlth its ancient meaning;
i.e., the process of doing arithmetic using Arabic numerals. .In
the middle ages, abacists computed on the abacus and algorists
computed by algorism. Followlng the middle ages, the origin of
this word was in doubt, and early linguists attempted to guess at

TSO and Multicsr A Cost Comparison page 23

Chapter 1 Basic Concepts page 2

its derivation by making combinations like algiros (painful) +
arithmos (number); others said no, the word comes from "King
Algor of Castile." Finally, historians of mathematics found the
true origin of the word algorismv it comes from the name of a
famous Aribic textbook author, Abu Ja'far Mohammed, son of Moses,
native of Khowarizm. Khowarizm is today the small Soviet city
of Khiva. Al-KhowarizmT wrote the celebrated book Kitab .e...l_ ~

lcl.'~-mugabala C"Rules of restoration and reduction"); another
word, "algebra," stems from the title of his book, although the
book wasn't really very algebraic.

