MULTICS TECHNICAL BULLETIN MTB-031 Pare 1

To: Nistribution
From: P. Kelley
Nate: December 28, 1973

Subject: The Multics Online Installation System

This document is an introduction to the program logic of the
Multics Online Installation System. EFxcluded from this
discussion are topics such as the submission of an installation,
and the preparation of an installation including compilation,
testing, systems assurance tests and code auditing. The complete
installation procedure will be detailed in a future publication,
the "Library "aintenance Manual'. The term "installation system"
throughout this document shall refer only to the actual wupdating
tool.

I Multics Online Installation Requirements

The primary goal of a Multics online installation system is
that it must be capable of updating a group of logically related
system library segments while keeping the 1llbraries in a
consistent state. This Iimplies that:

1) segments which are to be removed from service may appear
in the address space of existing processes, and hence may
not be deleted but must be preserved with all attributes
except names intact until all such processes have
terminated.

2) the unavoidable periods of Inconsistency which occur
while installing modifications should be minimized;

3) the installation process should be reversible, to allow
removal of a bad (or inconsistent) modification;

4) the installation process should be restartable across
system or process failures, to minimize the periods of
library inconsistency which can onccur after these
failures;

5) the installation process should detect all errors which
occur while the libraries are being modified; it should
diagnose the cause of these errors, and it should recover
from these errors, leaving the libraries in a consistent
and usable state.

Other goals for the performance of the installation system are:
6) the installation procedure should provide generalized

facilities for manipulating the attributes of segments
being installed (e.g. names, ACL's, ring brackets);

Multics Project internal working documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTR- 031 Pare 2

7) the installation procedure should be short, simple to
understand, and easy to use;

8) the installation procecdure should have a simple input
interface so that it can be invoked quickly;

9) full and accurate automatic documentatinn should be
produced as part of the installation process;

10) the installation nrocedure should bhe table-driven to
facilitate modification or extension of the system's
functional capability.

Il Multics Online Installation System Definition

Confronted with the installation system goals stated in
section 1, the next step is to design a system which will meet
these goals. First, a definition of the terms "modification" and
"installation" in terms of library maintenance. A modification
is a group of segments which are related, either logically or
physically. A logical relationship might be composed of several
bound segments of the v2pll compiler, while a physical
relationship might be composed of a bound segment, its source
components, object components, source archive, and object
archive. An installation 1is the actual Iimplementation of

changing the system libraries. It can:

1) add the new segments in a modification to the libraries;

2) replace existing library segsments with segments in the
modification:

3) replace existing library segments with segments in the
modification while moving the replacement segments to
another library:

4) move existing library segments to another library; or

5) delete existing library segments,

The act of updating a seement can be broken down into a

series of ordered steps necessary to nerform the update. These
distinct steps, in the case of a replace operation, might

include: copying the new segment into the library; setting the
ring brackets of the newly created segment; setting the access
of the newly created segment; freeing the names aon the old

(existing) segment; adding names to the newly created segment;
and, logging a description of the update in an installation log
file. The set of these ordered steps is called a task, and each
ordered step necessary to perform a task is called a subtask.
Which means, a modification is a set of tasks, each composed of a
set of subtasks, which are implemented by an Jinstallation.
Therefore, an installation can be accomplished by creating a task
list and executing each task in the list. A simple example of a
task list generated for the replacement of the two segments
segment_1 and segment_2?2 a3s a modification might look like:

MULTICS TECHNICAL BULLETIN MTB- 03 Page 3

task 1: replace segment_1l in SSS
subtask 1: copy the new segment_1l into S5S
subtask 2: set access on newly created segment_1
subtask 3: free the names on the old segment_1
subtask Lh: ~add names to newly created segment_1
subtask 5: log the installation of segment_1
task 2: replace segment_2 in 5SS
subtask 1: copy the new segment_2 into S$SGS
subtask 2: set access on newly created segment_?2
subtask 3: free the names on the old segment_?
subtask 4: add names to newly created sesment_2
subtask 5: log the installation of segment_2

The execution of this task list results in the two segments
being installed, but does not attempt to minimize the time
between which the first segment is installed and the second
segment is installed, (1) Note that after the segment in task #1
is installed, the segment in task #2 still has to be copied, have
its access set, have the names removed from the old segment, and
have names added to it until it is also Iinstalled. Therefore,
the time interval of library inconsistencvy is a function of the
execution of these subtasks and the number of segments being
installed,

A solution to minimize the interval of library inconsistency
is to re-order the subtasks within the task list. 1¥f a sequence
number s assigned to each subtask of the original task 1list,
then a new task list is created containing the subtasks ordered
by sequence number, the result would look like:

(task 1) subtask
(task 2) subtask
(task 1) subtask
(task 2) subtask

: copy the new segment_1 into SSS

copy the new segment_2 into SSS

set access on newly created segment_1
set access on newly created segment_?2
(task 1) subtask free the names on the old segment_1
(task 2) subtask 3: free the names on the old segment_2
(task 1) subtask 4: add names to newly created segment_1
(task 2) subtask h: add names to newly created segment_?2
(task 1) subtask 5: log the installation of segment_1
(task 2) subtask 5: 1log the installation of segment_2

W W NN =
e ®=e aw

The interval of library inconsistency in this new task 1list
has been diminished drastically by limiting the interval to be a
function of the number of segments being installed and the size
of their respective name lists.

What other benefits can be derived from this '"task list"
approach to installations? Normally, the task list i3 executed
by starting at the first subtask in the list and ending at the
last. What would happen if the subtasks were executed In reverse
order, starting at the last subtask of the 1ist? If each subtask

(1) A segment is defined as "installed" when its external names
have been added to it, thus enahling users to access it,.

MULTICS TECHNICAL BULLETIN MTB-031 Page 4

were designed such that it would perform jts logical inverse
function when executed In "reverse" order, then a picture of the
execution of the task list in "reverse'" would look like:

(task 2) subtask
(task 1) subtask
(task 2) subtask
(task 1) subtask
(task 2) subtask
(task 1) subtask
(task 2) subtask
(task 1) subtask
(task 2) subtask
(task 1) subtask

log the de-installation of segment 2
log the de-installation of segment_1
remove names from new segment_2

remove names from new segment_1
restore the names to the old segment_2
restore the names to the old segment_l1
remove access from new segment_2 (2)
remove access from new segment_1
delete the new segment_2 from SSS (2)
delete the new segment_1 from S$SS

HHNRNWWE SO W

t would, in fact,

The '"reverse'" executlon of this task 1is
libraries to their

de-install the modification, restoring the
original state.

A means of accessing this task list in a different process
from which it was created, would be to store this 1list in a
segment area. In this way, it could be executed, either forward
or in reverse, in any process. By further maintaining in this
segment area, a means of determining which subtask is being

executed at any gliven moment during an installation, any
interruption of the execution of the installation (e.g. process
termination, system crash, etc.) can be restarted, or
de-installed, from where the installation was interrupted.

{(Provided that the Multics hierarchy remains intact.)

Similarly, if an installation error is detected during the
course of execution, an automatic error recovery mechanism can be
invoked to reverse the direction of execution, de-installing the
modification.

Note that there is a subtask to document each of the
segments being installed. This provides automatic documentation
of the modification at the time of installation <(or conversely,
de-installation).

111 Multics Online !Installation System Interface
A. General Command Interface

One possible command interface to perform this online
installation scheme is to provide a procedure which appends tasks
to a task list and then "installs'" these tasks. For each segment
of the modification being updated, there would be a task 1in the
form of a segment request specifyling what the task is to perform.
The segment request would contain information such as: the
pathname of the new segment to be installed; the pathname of the

(2) In actual implementation, access 1Iis not removed from the
newly created segment, nor is the new segment deleted.

~

MULTICS TECHMNICAL BULLETIN MTB-031 Page 5

old (existing) segment being changed; the pathname of the target
for this new segment (if different from the pathname of the old
segment); the ACL to be placed on the updated segment; and, the
ring brackets to be placed on the updated segment.

An advantage of this scheme 1is that 1t 1is completely
independent of any library organization. A disadvantage Is that
this independence assumes that the installer bhas a opriori
knowledge of the 1library organization and must continually
utilize this knowledge by specifying all the pathnames of the
library segments. Another disadvantage 1Is that the installer
must explicitly state, in the form of requests, each segment to
be wupdated, each ACL, and each ring bracket triplet associated
with every segment to be updated.

The laborious specification of ACL's and ring brackets can
be alleviated by making the following assumptions: in a replace
operation, the ACL's and rings to be placed on the new segment
can be derived from the old (existing) segment; and, in the case
of an addition of a new segment, the installer may define default
ACL's and rings for the installation, to be wused for new
segments. Both assumptions may be explicitly overridden by the
installer at the time of Issuing the reauest.

B. Simple Command Interface

To produce a simpler installer interface, the organizational
independence of this system must he compromised. tlowever, rather
than completely sacrifice the systam by coding library
organizatlon 1into it, the creation of a driving tahle containing
all library dependencies will maintain the integrity of the
system, and, at the same time provide organizational
specifications necessary for a simple installer interface. This
table, called a Jlibrary descriptor segment, will provide
information such as: structure of the libraries; structure of
backup and source librarles; lnitial ACLL's for these libraries;
and, ring brackets to be placed on segments created within these
libraries. To define a different library organization, 1t would
only be necessary to bulld a new library descriptor segment.

The formation of the installation task list may he
accomplished by one of several approaches. One is based upon the
concept of an "installation directory". All new copies of
segments to be updated Into the libraries would reside 1in this
directory. The command Iinterface would scan this directory
creating a task list composed of tasks to wundate each segment
located in the directory. Information such as ACL's, ring
brackets and backup libraries, would be discerned from the
library descriptor segment. This interface does not lend itself
to the existence of multiple libraries, nor does it facilitate
the necessity of installing special case segments such as gate
segments, which need non-standard AfCL's and rings. However, for
applications such as the hardcore updater, it would render very
useful,

An alternative is to create a '"source' segment comprised of
a 1list of segments to be updated with keywords indicating the

MULTICS TECHNICAL BULLETIN MTB-031 Page 6

library and action (i.e. add, replace, delete, or move), perhaps
also residing in an "installation directory", in which ACL's and
ring brackets, if not to be derived from the library descriptor,
may be explicitly stated. The 1installation procedure would
"compile'" this list into a task list which, when executed, would
update each segment accordingly. This approach maintains the
flexibility of the updating tool while providing a simple
installer interface.

IV The Multics Online Installation System (MIS)

Sections | through 111l of this document have attempted to
state: the goals of an online installation system; the design to
implement these goals; and, possible command interfaces for this
implementation. This section briefly defines the current Multics
Online Installation System, 1its limitations with regard to the
previous sections, and its future development.

The Multics Online Installation System (MIS) follows the
design stated 1in section 1l. It supplies a means of installing
segments which is restartabhle, reversible, recovers automatically
from errors, minimizes the period of library inconsistency, and
provides the facility of automatic documentation. The current
command interface to MIS is the procedure update_seg. Its level
of development is as described in section I11.A of this document.
Although being an extremely flexible tool, the major deficiency
of the current MIS is its lack of simplicity. The following
outline define areas of development being pursued at this time,
in their order of importance.

A. Full and accurate documentation of library modifications.

The documentation currently produced by MIS is a 1list of
segment modifications to the libraries. This list is

published weekly as an MIB ("Online Installation
Changes"). The help file news.info is manually updated
after an installation. The proposal for documentation
(MCR #189) will also append a hrief reason for the library
modification in both the installation 1log file and
news.info during the Jinstallation process. Formatted
documentation for info and include files will also be

produced along with the time of actual installation.
B. SPS documentation for MIS.

1. Submit SPS documentation for the update_seg command
interface,

2. Draft an MTB describing the proposal for documentating
MIS as a separate section of the SPS entitled '"Library
Maintenance Manual'. This supplement would include a
section on library maintenance, program logic
descriptions of MIS, and SPS-type module documentation.

MULTICS TECHMICAL BULLETIN MTB- 031 Page 7

C.

E.

Increase the size of online installations.

MIS is currently limited in the number of segments which
can be updated in a single modification. The proposal
(MCR #188) will increase the number of segments which MIS
can handle so that modifications the size of the V2PL1
compliler may be installed with a single installation.

Initial ACL's and safety switches.

Incorporate the concept of Initial ACL's for segments
being added to the libraries. Currently ACL's are
determined explicitly by the installer. Also incorporate
the '"safety switch" facility into MIS.

Simplify the installer's interface to MIS,

1. By splitting the wupdate_seg procedure into its two
logical sections (i.e. argument processing and function
execution), the capabilities of MIS will be made
available for alternative forms of command interfaces.

2. Once update_seg is spllit then the concept of a 1library
descriptor segment can be implemented by creating an
approprlate command interface as described in section
1t1.B,

